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It is pointed out that if the generating mechanism is a fraction integrated
process I(d), where d can be less than 1/2, but a simple ARMA model is
fitted, a consistent estimation procedure is likely to produce a unit root. Thus
the properties of the fitted model will be quite unlike those of the generating
mechanism.

1. INTRODUCTION

It is possible to build an econometric model and then to reach deductions
from it that are not strictly plausible. This can occur, for example, when
the true data generating process does not lie within the class of models
being considered, which will occur frequently. A consequence is that the
properties of the fitted model will not necessarily be equal to the properties
of the data in several important aspects. Professor G.S. Maddala was well
known for his careful modeling, not just becoming too deeply embedded
in the mathematical aspects of the model, and then providing links to
appropriate data. This small note provides an illustration of how the wrong
model can be achieved with quite incorrect properties. I hope that he would
approved of its aims, at least.
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2. DEFINING A LONG-MEMORY PROCESS

If Xt is a stationary process with unit variance and spectrum f(w), given
by

f(w) = 1 + c
∞∑

j=0

ρje
ijw (2.1)

where ρj = corr(Xt, Xt−j) and c = 1/π, then it has become common
practice to say that Xt has “long-memory” if f(w) tends to infinity as w
goes to zero. As, after a simple affine transformation,

f(0) = lim
m→∞

m∑
j=0

ρj (2.2)

the long-memory property implies that the sequence ρj produces a diver-
gent series. Consider the case where ρk > 0 and suppose that ρk+1 6= ρk

so that the autocorrelations decline with the lag but remain positive. It
follows that a necessary condition for divergence is

lim
k

ρk+1

ρk
= 1. (2.3)

As any long-memory process will have a spectrum that is unbounded at
zero frequency its autocorrelations will obey (2.3). An example is the pure
fractional unit root process I(d) generated by (1−B)dXt = εt, εt iid, B the
backward operator for which ρk ∼ ck2d−1 for large, positive k as in Beran
(1994) and elsewhere. This autocorrelation sequence clearly obeys (2.3).
The same will be true for any ARIMA(p, d, q) process with |d| < 1/2.

3. MODEL APPROXIMATION

Now suppose that an ARMA(1, q) model is used to approximate a long-
memory process, so that a model of the form

Xt = φXt−1 + εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q (3.1)

is fitted to data from the stationary, zero-mean, long-memory process Xt.
A form of the methods of moments or Yule-Walker equations can be used
to estimate the coefficients φ, θj , by multiplying the equation by Xt−k and
taking expectations, using k = 1, . . . , q + 1, sequentially giving q equations
to solve most of which will be both non-linear and complicated. However
the last equation will be E[Xt, Xt−q−1] = φE[Xi−1, Xt−q−1], i.e. ρq+1 =
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φρq, so that

φ̂ =
ρ̂q+1

ρ̂q
.

Provided consistent estimates of autocorrelations are used, and q is large,
then asymptotically φ̂ ∼= 1, according to (2.3). There is no reason to
believe that there will be a compensating unit root in the moving average
term; in fact there cannot be if q is finite, although there may be a large
root. The estimation method is simple but consistent. I expect that if more
sophisticated methods were analyzed they would reach the same conclusion.

4. IMPLICATIONS

If only a limited class of models is presented to the data for consideration,
the best one can hope for is the best approximation, in some sense, to the
true data generation process. If the DGP has a dominant property, such
as long-memory, and the class of models being considered does not include
this case, a poor approximation may result. The theorem says that if the
data has the long-memory property, then a fitted ARMA(1, q) model will
produce, asymptotically, a perfect unit root, or a near unit root for a large
sample. Thus an I(d), 0 < d < 1 process will be “found” to be I(1),
by the data analysis. Although only one type of estimation procedure is
considered in the proof, it is consistent, and I suspect that other consistent
estimation methods can be shown to produce something similar; it just
happens to be simple using the simple method of moments. It should be
noted that both I(1) and I(d), 0 < d < 1 processes do have the same
dominant property of the infinite peak at zero frequency. Other properties
are quite different, such as the shape of the estimate correlogram and the
expansion of the variance as the sample size increases. It is well known,
for example, that the variance is proportional to t2 for the I(1) process, to
log t for the I(1/2)? process and converges to a constant for 0 < d < 1/2
Thus, the fitted, unit root model, will have quite different properties than
the DGP. When it is claimed that a “unit root has been found” it does not
follow, necessarily, that the series has all of the properties associated with
a unit root.

The theorem is concerned just with ARMA(1, q) processes, but a sim-
ilar but more complicated argument holds for ARMA(p, q), with p fixed
and q increasing. As an approximation, the argument will also hold for
ARMA(2, 1) written as

(1 − αB)(1 − βB)Xt = (1 − γB)εt
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and thus as

(1 − αB)Xt = (1 − γB)(1 − αB)−1εt

which is ARMA(1, q) of a constrained form.
As a simple numerical example, Bollerslev, Engle, and Nelson (1994) re-

port fitting various ARMA models to log σt where σt is a time-changing
measure of volatility, including ARMA(1, q), q = 1, 2, 3, 4 and 5 and ARMA(2, 1).
They only report the first autoregressive parameter for the ARMA(2, 1)
model using three sets of long daily stock index data, finding values of
0.964, 0.951, and 0.970 for samples for periods 1885–1914, 1925–1952, and
1953–1990, respectively. These values are by no means a test of the theorem
state above but are supportive of it.

The I(d) process is long-memory, but there are plenty of other models
that have similar properties, including those with breaks (discussed by
Granger and Hyung, (2000)) and possibly some non-linear processes.

The result reported in Section 2 is for a rather simple, specific situation
but could be symptomatic of many cases where the data contains a long-
memory type property but an inappropriate class of models is fitted, leading
to a unit root being “found” even though a unit root process has other
properties, such as an exploding variance, not seen in the data.

REFERENCES
Beran, J., 1994, Statistics for long-memory statistics. Chapman and Hall, London.

Bollerslev, T., R. F. Engle, and D. B. Nelson, 1994, ARCH models. In: Handbook of
Econometrics, R. F. Engle and D. McFadden eds., Volume IV, chapter 9, p2967-3039.
Elsevier Scientific Publishers.

Granger, C. W. J. and N. Hyung, 2000, Occasional stochastic breaks and long-
memory. Working paper, UCSD Dept. of Economics


