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1. INTRODUCTION

The purpose of this paper is to raise the issue of data transformation and
its potential implications for the specification of forecasting models, and for
forecasts from such models. This is done by first discussing unit root tests
and cointegration, and then examining the impact of alternative assump-
tions placed on data generating processes before testing for unit roots and
cointegration on subsequent predictions. Although we raise a number of
issues, and in some cases suggest at least partial solutions, this paper is
primarily meant to serve as a vehicle for underscoring the importance of
the often ignored issue of data transformation on empirical model building.
Thus, many issues are left unresolved.

In macroeconometrics, unit root tests are typically performed using logs.
This is consistent with much of the real business cycle literature (see e.g.
Long and Plosser (1983) and King, Plosser, Stock, and Watson (1991))
where it is suggested, for example, that GDP should be modeled in logs,
given an assumption that output is generated according to a Cobb-Douglas
production function. While this is sensible from a theoretical macroeco-
nomic perspective, there is no clear empirical reason why logs should be
used rather than levels, when performing unit root tests, particularly given
that standard unit root tests assume linearity under both the null and the
alternative, and violation of this linearity assumption can result in severe
size and power distortion, both in finite and large samples (e.g. see Granger
and Hallman (1991)). In addition, it is not always obvious by simply in-
specting the data, for example, which transformation is ‘appropriate’, when
modeling economic data (e.g. see Figure 1). Thus, it is reasonable to care-
fully address the problem of data transformation before running a unit root
tests, for example. In a recent paper which is not discussed in detail here,
Corradi and Swanson (2000) propose a framework for hypothesis testing
in the presence of nonlinearity and nonstationarity. As a detailed illustra-
tion, they consider the problem of choosing between logs and levels before
carrying out unit root and/or cointegration tests. An important feature of
their test is that it is not subject to the difficulties discussed below when
choosing between logs and levels using (possibly) integrated series.

The current convention is to define an integrated process of order d (I(d))
as one which has the property that the partial sum of the dth difference,
scaled by T−1/2, satisfies a functional central limit theorem (FCLT). In
this case, integratedness in logs does not imply integratedness in levels,
and vice − versa. Thus, any a priori assumption concerning whether to
model data in levels or logs has important implications for the outcome
of unit root and related tests. For example, Granger and Hallman (1991)
show that the percentiles of the empirical distribution of the Dickey-Fuller
(1979) statistic constructed using exp(Xt) are much higher, in absolute
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value, than the corresponding percentiles constructed using the original
time series Xt, when Xt is a random walk process. Thus, inference based
on the Dickey-Fuller statistic using the exponential transformation leads to
an overrejection of the unit root null hypothesis, when standard critical val-
ues are used. More recently it has been shown in Corradi (1995) that if Xt

is a random walk, then any convex transformation (such as exponentiation)
is a submartingale, and any concave transformation (such as taking logs) is
a supermartingale. However, while submartingales and supermartingales
have a unit root component, their first differences do not generally satisfy
typical FCLTs. Thus, Dickey-Fuller type tests no longer have well defined
limiting distributions. Given all of the above considerations, it is of some
interest to use a statistical procedure for selecting between linear and log-
linear specifications, rather than simply assuming from the outset that a
series is best modeled as linear or loglinear. Further, while Cox-type tests
are available for the I(0) case, few results are available for the I(1) case.

The arguments used above carry over to the case of cointegration tests,
and indeed to any statistical tests based on the use of partial sums of
functionals of residuals, for example. As the use of cointegration tests is
prevalent, however, we focus our discussion on them in this paper.

One of the areas where unit root and cointegration tests are crucial is in
the construction of vector error correction (VEC) forecasting models. In or-
der to illustrate this point, we simulate a real-time forecasting environment,
where data are generated using cointegrated variables, and where models
are estimated using data which are correctly or incorrectly transformed.
Our primary focus is on the choice between log and level data, and we
find that incorrect data transformation leads to poor forecasts from cointe-
grated models, relative to simpler models based on differenced data, even
when the true data generating process exhibits cointegration. This may
be due to imprecise estimation of cointegrating spaces when the correct
data transformation is uncertain, for example, and may help to explain
the mixed evidence concerning the usefulness of cointegration restrictions
in forecasting (see e.g. the special issue of the Journal of Applied Econo-
metrics (1996) on forecasting). The finding is based on an evaluation of
VEC models and vector autoregressive (VAR) models using differenced
and undifferenced data. Three additional findings based on our analytsis
are that: (1) VEC models forecast-dominate differenced data VAR models
when the correct data transformation is used. (2) The worst models based
on correctly transformed data clearly dominate the best models based on
incorrectly transformed data. (3) When the incorrect data transforma-
tion is used to construct forecasting models, differenced data VAR models
outperform not only their VEC counterparts, but also VAR models based
on undifferenced data. In order to shed further light on the issue of data
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transformation in VEC models, we examine the finite sample performance
of cointegration tests under incorrect data transformation.

The rest of the paper is organized as follows. Section 2 discusses unit
root and cointegration testing under data transformation, and Section 3
contains a discussion of forecasting models under data transformation as
well as the results of our forecasting experiments. Concluding remarks are
given in Section 4.

2. UNIT ROOT AND COINTEGRATION TESTS

Given a series of observations on an underlying strictly positive process
Xt, t = 1, 2, . . ., our objective is to decide whether: (1) Xt is an I(0)
process (possibly around a linear deterministic trend), (2) log Xt is an
I(0) process around a nonzero linear deterministic trend, (3) Xt is an I(1)
process (around a positive linear deterministic trend), and (4) log Xt is
an I(1) process, (possibly around a linear deterministic trend). A natural
approach to this problem is to construct a test that has a well defined
limiting distribution under a particular DGP, and diverges to infinity under
all of the other above DGPs.

While it is easy to define a test having a well defined distribution under
one of (1)-(4), it not clear how to ensure that the test has power against all
of the remaining DGPs. To illustrate the problem, consider the sequence
ε̂t, given as the residuals from a regression of Xt on a constant and a time
trend. Now, construct the test statistic proposed by Kwiatkowski, Phillips,
Schmidt, and Shin (1992, hereafter KPSS):

ST =
1

σ̂2
T

T−2
T∑

t=1

 t∑
j=1

ε̂2t

2

,

where σ̂2
T is a heteroskedasticity and autocorrelation (HAC) robust esti-

mator of var
(
T−1/2

∑t
j=1 εt

)
. It is known from KPSS that if Xt is I(0)

(possibly around a linear deterministic trend), then ST has a well defined
limiting distribution under the null hypothesis, while ST diverges at rate
T/lT under the alternative that Xt is an integrated process, where lT is the
lag truncation parameter used in the estimation of the variance term in ST .
However, if the underlying DGP is log Xt = α1 + δ1t+

∑t
j=1 εj , δ1 > 0 (i.e.

logXt is a unit root process) then both σ̂2
T and T−2

∑T
t=1

(∑t
j=1 ε̂j

)2

will

tend to diverge at a geometric rate, given that Xt = exp(α1+δ1t+
∑t

j=1 εj).
In this case it is not clear whether the numerator or the denominator is ex-
ploding at a faster rate. This problem is typical of all tests which are based
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on functionals of partial sums and variance estimators, and arises because
certain nonlinear alternatives are not treatable using standard FCLTs.

So far we have analyzed the case in which we perform a test with I(0) as
the null hypothesis and I(1) as the alternative. In this case, the statistic
is typically constructed in terms of functionals of partial sums scaled by
a variance estimator. Another common procedure is to test for the null
of I(1) versus the alternative of I(0) using Dickey-Fuller type tests. To
illustrate the problems associated with this approach, consider the following
simple example. Assume that log Xt = log Xt−1 + εt, εt ∼ iid(0, σ2

ε ).
However, we perform a Dickey-Fuller test using levels. For example, we
compute T (α̂T − 1), where

α̂T =
∑T

t=2 XtXt−1∑T
t=2 X2

t−1

.

Now, Xt = exp(log Xt−1 + εt) = Xt−1 exp(εt), so that we can write:

T (α̂T − 1) =
T

∑T
t=2 X2

t−1(e
εt − 1)∑T

t=2 X2
t−1

.

Note that as Xt = X0 exp(
∑t

j=1 εj), standard unit root asymptotics no
longer apply. However, by confining our attention to the case where ε ∼
N(0, σ2

ε ), we can examine the properties of T (α̂T − 1), thus gaining insight
into the performance of a Dickey-Fuller test using an incorrect transforma-
tion of the data. Notice that Eeεt = e

1
2 σ2

ε > 1. Thus, we might expect
that T (α̂T − 1) tends to diverge to +∞. However, Granger and Hallman
(1991) find that this statistic tends to overreject the null of a unit root.
One possible explanation for the difference between their finding and our
intuition is that the distribution of eεt − 1 is highly skewed to the left, and
has a lower bound of negative one. Thus, even though the mean of eεt−1 is
positive, this is due to the very long right-tail of the distribution. When εt

is drawn from a standard normal distribution, however, most observations
are rather close to zero (e.g. 95% are between 2 and -2). These data, when
transformed using eεt − 1, are mainly between -0.86 and 6.4. Further, the
median of the distribution of eεt − 1 is zero. Now, in the context of finite
samples, this suggests that if we truncate the distribution of eεt − 1 to
be, say, between -0.8 and 1, then the mean of this truncated distribution
will actually be negative (as we draw relatively fewer observations close to
the upper bound than negative observations close to the lower bound). In
the context of generating data in finite samples, as Granger and Hallman
did, this situation indeed seems to have occurred, resulting in mostly large
negative values being calculated for the expression T (α̂T −1). Put another
way, the negative elements of T

∑T
t=1 X2

t−1(e
εt − 1) are usually quite large



6 JOHN C. CHAO, VALENTINA CORRADI, AND NORMAN R. SWANSON

in magnitude, relative to most of the positive elements of the same sum.
Of course, in large samples, and with large σ2

ε we should expect that this
result will not hold, as the effect of large positive draws from the distribu-
tion of eεt − 1 begins to dominate the overall sum T

∑T
t=1 X2

t−1(e
εt − 1).

This intuition suggests that Granger and Hallman’s results, while hold-
ing for the usual sample sizes and the usual error variances observed in
economic time series, should not hold generally. It further suggests that
indeed using levels data when the true process is I(1) in logs will produce
either overrejection of the unit root null (as Hallman and Granger show),
or underrejection of the null. Interestingly, these arguments also suggest
that for very special cases (i.e. appropriately chosen σ2

ε and sample size),
the empirical size of the Dickey-Fuller test may actually match the nominal
size, even when the wrong data transformation is used! In summary, there
appears to be a need to carefully consider which transformation is used
when constructing unit root tests, as the wrong transformation may yield
entirely misleading results.

Even if we decide to keep integratedness as a maintained assumption,
and choose between I(1) in levels and I(1) in logs, or vice versa, we do
not in general obtain a test which has unit asymptotic power. For example
consider constructing a KPSS-type test using the first differences of the
levels data (i.e. ∆Xt). Under the null of I(1) in levels the statistic has the
usual well defined limiting distribution. However, under the alternative of
I(1) in logs it does not necessarily diverge to infinity. Again the reason
for this result is that both the numerator and the denominator tend to
diverge to infinity if they have a positive linear deterministic trend, and in
general we cannot determine whether the numerator or the denominator is
diverging at a faster rate.

Given the above issues, it may be useful to examine the finite sample
performance of Johansen CI tests under incorrect data transformation. We
turn next to this issue. Our approach is to examine the finite sample be-
havior of the Johansen (1988,1991) cointegration test using data generated
according to the above parameterizations.

Table 1 reports the finite sample size and power of the Johansen trace
test when applied to incorrectly transformed data. Data are generated
according to the following VEC model:

∆Q1,t = a + b(L)∆Q1,t−1 + cZt−1 + εt, (1)

where Q1,t = (Xt,W
′
t )
′ is a vector if I(1) variables, Wt a n × 1 vector for

some n ≥ 1, Zt−1 = dQ1,t−1 is a r × 1 vector of I(0) variables, r is the
rank of the cointegrating space, d is an r× (n + 1) matrix of cointegrating
vectors, a is an (n + 1) × 1 vector, b(L) is a matrix polynomial in the lag
operator L, with p terms, each of which is an (n + 1)× (n + 1) matrix, p is
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the order of the VEC model, c is an (n + 1)× r matrix, and εt is a vector
error term. For DGPs generated as linear in levels, we report rejection
frequencies for a = (a1, a2)′, a1 = a2 = {0.0, 0.1, 0.2}, b = 0, c = (c1, c2)′,
c1 = −0.2, c2 = {0.0, 0.2, 0.4, 0.6}, and σ2

εi
= 1.0, i = 1, 2. For loglinear

DGPs, b and c are as above, a1 = a2 = {0.0, 0.01, 0.02}, and σ2
εi

= 0.09,
i = 1, 2. Results for other parameterizations examined are qualitatively
similar, and are available upon request from the authors. The results of
the experiment are quite straightforward. First, the empirical size of the
trace test statistic is severely upward biased, with bias increasing as T in-
creases. Further, and as expected, the finite sample power (all cases where
c2 6= 0) increases rapidly to unity as T increases. Thus, the null of no coin-
tegration is over-rejected. Also, we know that estimators of cointegrating
vectors are inconsistent under the wrong data transformation, even if the
true cointegrating rank is known. Thus, it is perhaps not surprising that
VEC models more clearly dominate VAR models (in differences) when the
appropriate data transformation is used.

3. FORECASTING USING VECTOR ERROR CORRECTION
MODELS

3.1. Discussion
A number of well known issues arise in the context of the specification

and estimation of forecasting models which have obvious implications for
the application of the above procedures. In particular: (1) As noted above,
the gains to forecasting associated with the use of VEC models rather
than simpler VAR models based on differenced data is not clear. (2) It
is not clear whether models based on undifferenced data are dominated
by VAR and VEC models based on differenced data, even when variables
are I(1). (3) The choice of loss function, f , is not always obvious, and
certainly this choice depends on the particular objective of the forecaster
(see e.g. Christoffersen and Diebold (1996,1998), Pesaran and Timmerman
(1994), Swanson and White (1997), and the references contained therein).
(4) In a generic forecasting scenario it is not always obvious whether data
should be logged or not, and it is not obvious how to compare forecasts of a
variable arising from log and level versions of some generic model1 (see e.g.
Ermini and Hendry (1995)). For example, assume that one is interested in
forecasting Yt. In this context, there are a number of choices. First, we

1Note that here and below we assume that only linear forecasting models are being
examined. If this were not the case, then this last issue would not be relevant, as any
linear model estimated using levels data could obviously be transformed into some non-
linear model using logged data, and as long as heteroskedasticity etc. were appropriately
modelled, there might be little to choose between the models, at least within the context
of forecasting (see e.g. Granger and Swanson (1996).
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TABLE 1.

Johansen Cointegration Test Performance under the Wrong Data Transformation (∗)

T=100 T=250 T=500

a1 c1 c2 Trace1 Trace2 Trace1 Trace2 Trace1 Trace2

Panel A: DGP in logs

0.0 0.0 0.0 0.339 0.426 0.596 0.733 0.94 0.95

0.01 0.0 0.0 0.298 0.383 0.534 0.671 0.914 0.924

0.02 0.0 0.0 0.310 0.376 0.560 0.644 0.914 0.906

0.00 -0.2 0.2 0.978 0.982 1.000 1.000 1.000 1.000

0.00 -0.2 0.4 0.998 0.996 1.000 1.000 1.000 1.000

0.00 -0.2 0.6 0.999 1.000 1.000 1.000 1.000 1.000

0.01 -0.2 0.2 0.973 0.965 1.000 0.999 1.000 1.000

0.01 -0.2 0.4 0.997 0.994 1.000 1.000 1.000 1.000

0.01 -0.2 0.6 1.000 0.998 1.000 1.000 1.000 1.000

0.02 -0.2 0.2 0.967 0.956 0.999 0.999 1.000 1.000

0.02 -0.2 0.4 0.997 0.990 1.000 1.000 1.000 1.000

0.02 -0.2 0.6 1.000 0.997 1.000 1.000 1.000 1.000

Panel B: DGP in levels

0.1 0.0 0.0 0.152 0.163 0.354 0.235 0.657 0.395

0.2 0.0 0.0 0.498 0.208 0.922 0.434 0.999 0.763

0.1 -0.2 0.2 0.989 0.965 1.000 1.000 1.000 1.000

0.1 -0.2 0.4 1.000 1.000 1.000 1.000 1.000 1.000

0.1 -0.2 0.6 1.000 1.000 1.000 1.000 1.000 1.000

0.2 -0.2 0.2 1.000 0.965 1.000 1.000 1.000 1.000

0.2 -0.2 0.4 1.000 1.000 1.000 1.000 1.000 1.000

0.2 -0.2 0.6 1.000 1.000 1.000 1.000 1.000 1.000

(∗) Notes: Entries are Johansen trace test statistic rejection frequencies (Trace1
uses intercept and Trace2 uses intercept and trend in test regressions), Panel A
presents results when the DGP is in logs, and data are exponentiated; while in
Panel B the DGP is in levels, and data are logged. For each panel, entries in the
remaining rows report the empirical power (all based on 5% nominal level tests)
when the wrong data transformation is used. 5000 Monte Carlo simulations were
run (see above for further details).
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must decide whether we want to forecast Yt, ∆Yt, log Yt, or ∆ log Yt. Given
this decision, we must decide how to compare the models. For example, if
using differenced data, we may transform forecasts of ∆ log Yt into forecasts
of ∆Yt, or vice− versa, when comparing models.

3.2. Monte Carlo Results
In this section, we examine all of these issues by conducting a series of

Monte Carlo experiments. We begin by assuming that we are interested
in constructing forecasts using data which are generated according to the
following VEC model:

∆Q1,t = a + b(L)∆Q1,t−1 + cZt−1 + εt, (2)

where Q1,t = (Xt,W
′
t )
′ is a vector if I(1) variables, Wt a n × 1 vector for

some n ≥ 1, Zt−1 = dQ1,t−1 is a r× 1 vector of I(0) variables, r is the rank
of the cointegrating space, d is an r×(n+1) matrix of cointegrating vectors,
a is an (n + 1)× 1 vector, b(L) is a matrix polynomial in the lag operator
L, with p terms, each of which is an (n+1)× (n+1) matrix, p is the order
of the VEC model, c is an (n+1)× r matrix, and εt is a vector error term.
In our experiments we let the integratedness of the series be unknown, the
rank of the cointegrating space be unknown, p be unknown, and we assume
no prior knowledge concerning whether to log the data or not. Also, we
set n = 1, and the order of the matrix lag polynomial equal to 0 or 1
(hence, b(L) = b, say, for simplicity). In all cases, we construct a sequence
of P 1-step ahead forecasts of Xt, and construct average mean square
forecast error (AMSE), average mean absolute percentage forecast error
(AMAPE), and average mean absolute deviation forecast error (AMAD)
criteria, where the average is based on 1000 replications. Also, let P = 50
and P = T/2, where T is the sample size. Lags are selected using the
BIC criterion. All parameters (including the cointegrating rank) are re-
estimated before each new forecast is formed, using an increasing window
of observations, starting with T − P observations, and ending with T −
1 observations, so that sequences of P ex − ante 1-step ahead forecasts
are constructed for each replication. Data are generated according to the
following parameterizations:
1. Data generated as loglinear: Samples are T = 100, 250, and 500 ob-
servations. a = (a1, a2)′, a1 = a2 = {0.0, 0.001, 0.002}; b = (b1, b2), b1 =
(b11, b21)′, b2 = (b12, b22)′, and either b12 = b21 = b11 = b22 = 0, or
b12 = b21 = 0, b11 = −0.4, b22 = 0.2; and c = (c1, c2)′, c1 = −0.2, c2 =
{0.2, 0.4, 0.6}, d = (1,−1)′, εi,t ∼ IN(0, σ2

εi
), σ2

εi
= 0.09, i = 1, 2, and

E(ε1,tε2,t) = 0 for any t.
2. Data generated as linear in levels: The same parameterizations as above
are used, except that a1 = a2 = {0.0, 0.1, 0.2} and σ2

εi
= 1.0, i = 1, 2.
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In order to summarize our results, we group our Monte Carlo exercises
into four experiments:
Experiment I: All simulations are based on data generated as loglinear (ac-
tual data are referred to as log Xt). Model selection criteria (i.e. AMSE,
AMAPE, and AMAD) are constructed using forecasts of log Xt. We al-
ways estimate two types of models, one using logged data, and the other
using levels data. For models estimated using logged data, we immediately
have available the appropriate forecast, say l̂og Xt. However, for models
estimated using levels data, we only have available a levels forecast, say X̂t,
and we construct log X̂t, in order to compare the model selection criteria
across data transformations.
Experiment II: All simulations are based on data generated as loglinear
(actual data are referred to as log Xt). In this case, we construct model
selection criteria using forecasts of Xt. For models estimated using logged
data, we construct exp ̂(log Xt). Note here that we do not make the usual
bias adjustment, as this bias adjustment is based on the presumption of
normality, presumption which does not generally hold in economic data.
For models estimated using levels data, we immediately have available the
appropriate forecast, say X̂t.
Experiment III: All simulations are based on data generated as linear in
levels (actual data are referred to as Xt). In this case, we construct model
selection criteria using forecasts of Xt. All forecasts are constructed as in
Experiment II.
Experiment IV: All simulations are based on data generated as linear in
levels (actual data are referred to as Xt). In this case, we construct model
selection criteria using forecasts of log Xt. All forecasts are constructed as
in Experiment I.

Based on the above framework, we compiled 48 tables of results, cor-
responding to Experiments I-IV, T= {100, 250, 500}, p = {1, 2} in the
VAR(p) DGP, and P = {50, T/2}. Because the results are qualitatively
similar, and for the sake of brevity, we present only four tables, corre-
sponding to Experiments I-IV, T=100, p=1, and P=50. Complete results
are available from the authors. Tables 2-5 summarize our findings, and our
conclusions are grouped into answers to (1)-(4) above.

(1) Although the numerical differences are not great, the VEC model in
differences always has a lower AMSE than the VAR model in differences
when the correct data transformation is used to estimate the models and
to compare the forecasts. This can be seen by comparing the first and
third columns of entries in Tables 1 and 3. Furthermore, note that when
the DGP is loglinear, and models are estimated using the correct data
transformation, but forecasts are then transformed so that levels forecasts
are compared when data are generated and estimated in logs (and vice-



DATA TRANSFORMATION AND FORECASTING IN MODELS 11

TABLE 2.

Experiment I - DGP in logs, compare log forecasts of Yt
(∗)

VEC in differences VAR in differences VAR in levels

a1 c2 criterion ̂(log Xt) log X̂t
̂(log Xt) log X̂t

̂(log Xt) log X̂t

AMSE .1008 .2171 .1034 .2001 .0953 .1674

0 0.2 AMAPE 259.0 215.3 300.9 250.9 365.5 302.2

AMAD .2529 .3166 .2560 .3089 .2459 .3002

AMSE .0978 .2453 .1002 .2301 .0950 .1654

0 0.4 AMAPE 313.1 532.1 331.0 273.2 298.9 1176

AMAD .2492 .3250 .2521 .3180 .2455 .3014

AMSE .0971 .2722 .0987 .2515 .0949 .1716

0 0.6 AMAPE 241.2 237.7 214.9 311.4 303.9 277.2

AMAD .2482 .3366 .2501 .3290 .2454 .3098

AMSE .1008 .2103 .1034 .1944 .1001 .2823

0.001 0.2 AMAPE 313.3 235.4 273.3 247.8 261.2 278.8

AMAD .2529 .3140 .2560 .3064 .2521 .3483

AMSE .0978 .2384 .1002 .2254 .0995 .3177

0.001 0.4 AMAPE 253.0 290.8 263.5 257.4 306.0 260.6

AMAD .2492 .3212 .2521 .3151 .2513 .3609

AMSE .0971 .2653 .0987 .2424 .0992 .3609

0.001 0.6 AMAPE 216.3 210.4 212.5 238.7 242.7 282.1

AMAD .2482 .3333 .2501 .3251 .2510 .3773

AMSE .1008 .2058 .1034 .1865 .1001 .2751

0.002 0.2 AMAPE 607.2 472.2 618.9 455.8 341.8 352.3

AMAD .2530 .3111 .2560 .3034 .2521 .3444

AMSE .0978 .2249 .1002 .2166 .0995 .3067

0.002 0.4 AMAPE 236.0 315.3 239.6 258.0 396.0 274.3

AMAD .2491 .3179 .2521 .3123 .2513 .3567

AMSE .0971 .2552 .0987 .2320 .0992 .3431

0.002 0.6 AMAPE 232.2 300.1 247.7 314.4 224.9 1170

AMAD .2481 .3294 .2501 .3211 .2510 .3716

(∗)Notes: Entries are averages of functions of forecast errors. The first, third, and fifth
columns of entries correspond to models which are estimated using the “correct” data
transformation, while for the second, fourth, and sixth columns, the “incorrect” data trans-
formation is used. 1000 Monte Carlo replications were run (see above for further discussion).
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TABLE 3.

Experiment II - DGP in logs, compare levels forecasts of Yt
(∗)

VEC in differences VAR in differences VAR in levels

a1 c2 criterion exp ̂(log Xt) X̂t exp ̂(log Xt) X̂t exp ̂(log Xt) X̂t

AMSE .5940 .8948 .6224 .8804 .5693 .9308

0 0.2 AMAPE 26.26 70.67 26.66 55.76 25.49 34.18

AMAD .3878 .4357 .3952 .4339 .3748 .4336

AMSE .6962 1.5066 .7306 1.5044 .6872 1.5978

0 0.4 AMAPE 25.91 62.59 26.20 62.31 25.46 36.21

AMAD .3941 .4529 .3998 .4509 .3855 .4565

AMSE .9296 2.7487 .9550 2.7122 .9200 3.9232

0 0.6 AMAPE 25.78 142.55 25.96 103.2 25.45 38.86

AMAD .4134 .4872 .4167 .4830 .4055 .4980

AMSE .6355 .9674 .6662 .9625 .6254 1.0533

0.001 0.2 AMAPE 26.26 61.91 26.66 54.45 26.15 892.1

AMAD .3985 .4481 .4062 .4467 .3940 .4653

AMSE .7470 1.6457 .7842 1.6385 .7529 2.2366

0.001 0.4 AMAPE 25.91 149.3 26.20 138.5 26.03 92.62

AMAD .4051 .4664 .4110 .4642 .4055 .4914

AMSE 1.0005 3.0007 1.0279 2.9610 1.0011 5.5447

0.001 0.6 AMAPE 25.78 91.87 25.96 56.88 25.98 307.8

AMAD .4252 .5016 .4286 .4973 .4265 .5363

AMSE .6801 1.0473 .7136 1.0423 .6698 1.1418

0.002 0.2 AMAPE 26.26 95.12 26.66 80.32 26.15 88.61

AMAD .4095 .4612 .4176 .4599 .4050 .4780

AMSE .8022 1.7950 .8423 1.7859 .8086 2.4608

0.002 0.4 AMAPE 25.90 54.83 26.20 55.74 26.04 97.76

AMAD .4164 .4802 .4227 .4779 .4169 .5050

AMSE 1.0774 3.2748 1.1070 3.2318 1.0780 6.1323

0.002 0.6 AMAPE 25.77 56.78 25.96 85.50 25.98 109.0

AMAD .4373 .5164 .4409 .5121 .4387 .5520

(∗)Notes: See notes to Table 2.
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TABLE 4.

Experiment III - DGP in levels, compare levels forecasts of Yt
(∗)

VEC in differences VAR in differences VAR in levels

a1 c2 criterion X̂t exp ̂(log Xt) X̂t exp ̂(log Xt) cXt exp ̂(log Xt)

AMSE 1.1256 1.1257 1.1515 1.1514 1.0670 1.0670

0.0 0.2 AMAPE 0.8490 0.8490 0.8599 0.8599 0.8452 0.8280

AMAD 0.8450 0.8449 0.8550 0.8550 0.8240 0.8240

AMSE 1.0925 1.0931 1.1170 1.1175 1.0638 1.0638

0.0 0.4 AMAPE 0.8380 0.8389 0.8477 0.8478 0.8280 0.8284

AMAD 0.8336 0.8338 0.8425 0.8426 0.8234 0.8234

AMSE 1.0866 1.0868 1.1010 1.1016 1.0630 1.0630

0.0 0.6 AMAPE 0.8375 0.8376 0.8427 0.8428 0.8290 0.8290

AMAD 0.8317 0.8318 0.8367 0.8369 0.8233 0.8233

AMSE 1.1230 1.1250 1.1510 1.1520 1.1190 1.1240

0.1 0.2 AMAPE 0.7887 0.7890 0.7990 0.7997 0.7887 0.7900

AMAD 0.8440 0.8450 0.8555 0.8560 0.8440 0.8450

AMSE 1.0917 1.0947 1.1170 1.1190 1.1110 1.1150

0.1 0.4 AMAPE 0.7795 0.7800 0.7870 0.7880 0.7860 0.7880

AMAD 0.8334 0.8346 0.8425 0.8431 0.8400 0.8430

AMSE 1.0860 1.0880 1.1010 1.1020 1.1080 1.1130

0.1 0.6 AMAPE 0.7780 0.7790 0.7830 0.7840 0.7860 0.7870

AMAD 0.8310 0.8320 0.8370 0.8374 0.8395 0.8410

AMSE 1.125 1.129 1.151 1.155 1.119 1.129

0.2 0.2 AMAPE 0.7380 0.7398 0.7469 0.7478 0.7370 0.7400

AMAD 0.8450 0.8470 0.8550 0.8560 0.8440 0.8477

AMSE 1.0890 1.0940 1.1170 1.1200 1.1100 1.1210

0.2 0.4 AMAPE 0.7270 0.7287 0.7360 0.7370 0.7348 0.7380

AMAD 0.8320 0.8340 0.8420 0.8440 0.8400 0.8445

AMSE 1.0840 1.0890 1.1010 1.1040 1.1080 1.1190

0.2 0.6 AMAPE 0.7260 0.7270 0.7310 0.7325 0.7343 0.7375

AMAD 0.8300 0.8330 0.8370 0.8380 0.8395 0.8440

(∗) Notes: See notes to Table 2. Data are generated according to the following process: ∆Q1,t =
a + b∆Q1,t−1 + cZt−1 + εt, where Q1,t = (Xt, Wt)′ is a 2x1 vector of I(1) variables, εt is a 2x1 vector
whose components are distributed IN(0, 1), and Zt = Xt − Wt. We set a1 = a2 ∈ {0, 0.1, 0.2},the
initial value Q1,0 = 100, c1 = −0.2, c2 ∈ {0.2, 0.4, 0.6}, and b11 = b12 = b21 = b22 = 0.
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TABLE 5.

Experiment IV - DGP in levels, compare log forecasts of Yt
(∗)

VEC in differences VAR in differences VAR in levels

a1 c2 criterion log(cXt) ̂(log Xt) log(cXt) ̂(log Xt) log(cXt) ̂(log Xt)

AMSE .000113 .000113 .000116 .000116 .000106 .000106

0.0 0.2 AMAPE .183739 .183751 .186229 .186203 .178603 .178630

AMAD .008455 .008455 .008569 .008568 .008219 .008220

AMSE .000110 .000110 .000113 .000113 .000106 .000106

0.0 0.4 AMAPE .181387 .181454 .183676 .183691 .178645 .178652

AMAD .008345 .008348 .008450 .008451 .008219 .008219

AMSE .000109 .000109 .000111 .000111 .000107 .000107

0.0 0.6 AMAPE .181064 .181089 .182714 .182698 .178679 .178680

AMAD .008328 .008329 .008404 .008403 .008219 .008219

AMSE .000097 .000098 .000100 .000100 .000096 .000097

0.1 0.2 AMAPE .168229 .168442 .170436 .170534 .167104 .167475

AMAD .007864 .007874 .007967 .007972 .007811 .007829

AMSE .000095 .000095 .000097 .000097 .000096 .000097

0.1 0.4 AMAPE .165849 .166013 .168085 .168203 .166955 .167370

AMAD .007751 .007759 .007856 .007861 .007803 .007823

AMSE .000094 .000094 .000096 .000096 .000096 .000097

0.1 0.6 AMAPE .165568 .165752 .167187 .167314 .167008 .167463

AMAD .007737 .007746 .007812 .007818 .007804 .007826

AMSE .000085 .000085 .000087 .000088 .000084 .000085

0.2 0.2 AMAPE .154989 .155192 .157030 .157234 .153972 .154645

AMAD .007349 .007359 .007446 .007456 .007301 .007334

AMSE .000083 .000083 .000085 .000085 .000084 .000085

0.2 0.4 AMAPE .152627 .152992 .154854 .155043 .153822 .154581

AMAD .007236 .007254 .007342 .007352 .007293 .007330

AMSE .000082 .000083 .000084 .000084 .000084 .000085

0.2 0.6 AMAPE .152423 .152833 .154014 .154255 .153858 .154681

AMAD .007226 .007246 .007301 .007313 .007294 .007333

(∗)Notes: See notes to Table 4.
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versa for levels-linear DGPs), then the VEC models again always have
lower AMSE values than their difference VAR counterparts (compare the
first and third columns of entries in Tables 2 and 4). However, the VEC
model clearly does not AMSE-dominate the VAR model in differences when
incorrectly transformed data are used in forecast construction (compare the
second and fourth column of entries in Tables 1-4). Thus, VEC models do
appear to uniformly dominate VAR model in differences, but only when
the correct data transformation is used for model estimation, regardless of
whether levels or log forecasts are ultimately compared. One reason for
this finding may be that CI vectors and ranks are not precisely estimated
when incorrectly transformed data are used.

(2) Undifferenced data VAR models AMSE-dominate difference VEC
and VAR models around 50% of the time when correctly transformed data
are used in estimation and forecast comparison (compare the first, third,
and fifth columns of entries in Tables 1-4). Thus, in some cases, the sim-
plicity of levels models appears to dominate more complex models, even
when there is cointegration. However, it must be stressed that this find-
ing only holds when correctly transformed data are used in forecast model
construction (see below).

(3) The choice of loss function, f , does appear to make a difference in
our experiments. In particular, the VEC model no longer beats the VAR
in differences in every single instance, when the AMAPE and AMAD are
used to compare models based on correctly transformed data. Also, the
undifferenced data VAR model which is based on correctly transformed
data is less frequently ”better” than the VEC model when AMAPE and
AMAD (rather than AMSE) are used to compare models. Thus, the choice
of loss criterion appears to play an important role in model selection, even
when criteria which are very similar, such as AMSE, AMAPE, and AMAD,
are used.

(4) Choosing the data transformation in some cases appears to play a
crucial role when comparing difference VEC and VAR models. For exam-
ple, consider comparing models using AMSE. Note that the worst of the
forecasting models based on correctly transformed data (i.e. choose the
worst performer from columns 1, 3, and 5 of the entries in Tables 1-4) is
almost always better than the best of the forecasting models based on in-
correctly transformed data (i.e. choose the best performer from columns 2,
4, and 6 of Tables 1-4). Furthermore, this result is much more apparent for
the loglinear DGPs reported on in Tables 1 and 2. When data is generated
as level-linear (Tables 3 and 4), there appears to be surprisingly little to
choose between data transformation, although the correct transformation
is still usually “better” based on our criteria. Finally, there appears to
be little to choose between transforming the forecasts from different fore-
casting models into levels or into logs to facilitate comparisons between
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FIG. 1. Logs Versus Levels Linear Representations for Some U.S. Macroeconomic
Series
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forecasts based on di�erent models. This can be seen by noting that the

ordinal ranking of the di�erent forecasting models is the same when the cor-

responding entries in either Tables 1 and 2 or Tables 3 and 4 are compared.

In addition to the above �ndings, the following points are worth noting.

First, although models based on data which have not been di�erenced are

often AMSE-best when data are correctly transformed, they are almost

always AMSE-worst when comparing forecast performance based on mod-

els estimated with incorrectly transformed data (compare column 6 entries

with all other entries in Tables 1-4). This suggests that models with undif-

ferenced data should perhaps only be used in the I(1) context when one is

rather sure that the data are correctly transformed. As it is often diÆcult

to ascertain the "correct" data transformation to use, forecasting models

based on data which have not been di�erenced should thus be used with

caution in practical applications.

Second, we have only indirect evidence on the usefulness of the BIC

criterion when data are incorrectly transformed. In particular, one of the

reasons why models with incorrectly transformed data perform so poorly

relative to models estimated with correctly transformed data may be that

forecasts based on different models. This can be seen by noting that the
ordinal ranking of the different forecasting models is the same when the cor-
responding entries in either Tables 1 and 2 or Tables 3 and 4 are compared.

In addition to the above findings, the following points are worth noting.
First, although models based on data which have not been differenced are
often AMSE-best when data are correctly transformed, they are almost
always AMSE-worst when comparing forecast performance based on mod-
els estimated with incorrectly transformed data (compare column 6 entries
with all other entries in Tables 1-4). This suggests that models with undif-
ferenced data should perhaps only be used in the I(1) context when one is
rather sure that the data are correctly transformed. As it is often difficult
to ascertain the ”correct” data transformation to use, forecasting models
based on data which have not been differenced should thus be used with
caution in practical applications.

Second, we have only indirect evidence on the usefulness of the BIC
criterion when data are incorrectly transformed. In particular, one of the
reasons why models with incorrectly transformed data perform so poorly
relative to models estimated with correctly transformed data may be that
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there is no guarantee that the correct lag order will be chosen, even in the
limit, when the wrong data transformation is used.

4. CONCLUSIONS

In a series of Monte Carlo experiments we show that data transforma-
tion matters when forecasting using vector error correction models, and
when testing for unit roots and cointegration using standard approaches
which assume linearity both under the null and under the alternative. We
also show that incorrect data transformation leads to poor forecasts from
cointegrated models, relative to simpler models based on differenced data,
even when the true data generating process exhibits cointegration. This
finding may be due to imprecise estimation of cointegrating spaces when
the correct data transformation is uncertain, and may help to explain the
mixed evidence concerning the usefulness of cointegration restrictions in
forecasting.
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