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1. INTRODUCTION

In the analysis of panel data, a question often asked is whether to esti-
mate the model separately for the different individual cross-section units
or to estimate the model by pooling the entire data set. Often in empiri-
cal work, we are in a situation where we can get individual forecasts from
either the pooled equation or from the individual equations; we can get
aggregate forecasts either by adding individual forecasts from the pooled
equation or by adding individual forecasts from the individual equations.

The problem that we are concerned with in this paper is that of estima-
tion of cross-sectional parameters when there is parameter heterogeneity
among the different cross-section units. Robertsan and Symons (1992) and
Pesaran and Smith (1993) discuss the biases that are likely to occur if the
parameter heterogeneity is ignored and data are pooled. The main prob-
lem they are concerned with is the estimation of aggregate parameters.
The focus of this paper, by contrast, is the estimation of the individual
heterogeneous parameters.

The parameters of any individual cross-sectional unit can be estimated
by OLS from just the data for that particular unit. Alternatively, one
could pool the data and use the parameters from the pooled regression.
These two alternatives represent two extremes: the first says that all cross-
section units are different. The other says that they are all identical in their
behavior. The truth is perhaps somewhere in between, that the parameters
have some common elements. In an earlier study of the prediction of the
performance of students admitted to law schools, Rubin (1980) found that
one could get better predictions by using the data on the students admitted
to the other law schools and assuming that there are some common elements
in the different cross-section units. In this paper we use similar empirical
bayesian procedures in the estimation of short-run and long-run elasticities
for residential demand for electricity and natural gas for each of the 49
states considered. In general, these estimators turn out to be some form
of shrinkage estimators where the individual cross-sectional estimators are
“shrunk” towards an average estimator. The question is what this average
should be and what the shrinkage factor should be.

As reviewed in Maddala (1991), the shrinkage estimators appear to be
better than either the pooled estimator or the individual least squares
estimators. For further discussion, see Maddala and Hu (1996). There
are cases where the pooled regression gives inconsistent results, while the
shrinkage estimator gives consistent estimates. In some other cases, the
shrinkage estimators are capable of stabilizing the resulting estimates from
each individual equations. See the results in Maddala et al. (1997) and
Choi and Li (2000).
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In this paper, we investigate the properties of shrinkage estimators in
panel data models. In particular, the small disturbance asymptotic ap-
proximations are developed for the shrinkage estimators. It is shown that
in general the shrinkage estimators have superior properties among the indi-
vidual least squares estimators, the simple average estimators, the weighted
average estimators, estimators obtained by shrinking towards the simple av-
erage, and estimators obtained by shrinking towards the weighted average.

This paper is organized as follows. In Section 2, we discuss the properties
concerning the small disturbance asymptotic approximations of the shrink-
age estimators. The relevant derivations are summarized in the Mathe-
matical Appendix. The estimators considered in this section are based on
the assumption of homoskedastic errors and exogenous explanatory vari-
ables. Since the empirical application involves a lagged dependent variable
we discuss this case in Section 3. In Section 4, we provide an empirical
illustration of the implementation of the shrinkage estimators. Section 5
presents the conclusions.

2. THE SHRINKAGE ESTIMATORS

The N -sector cross-section equations are

yi = Xiβi + σui, i = 1, 2, · · · , N

where yi is T × 1, Xi is T × k, βi is k × 1 and ui is T × 1, T being the
number of observations. Xi is a set of exogenous variables. Assume that
ui are normally distributed errors with mean zero, E(ui) = 0. Consider
the simplest model where

E(uiu
′
j) =

{
IT if i = j
0 if i 6= j

.

We are, thus, ruling out any heteroskedasticity. Writing all the equations
compactly, we have

y1

y2

...
yN

 =


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · XN




β1

β2

...
βN

 + σ


u1

u2

...
uN


or

y = Xβ + σu

where y is NT × 1, X is NT × Nk, u is NT × 1. Let us first define
J ′ = (IkIk · · · Ik) , an NT ×k matrix. Thus define the following parameter
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vectors

β = N−1
∑

βi = N−1J ′β (simple average)

βW = (
∑

X ′
iXi)

−1 (
∑

X ′
iXiβj) = (J ′X ′XJ)−1J ′X ′Xβ (weighted aver-

age, or equivalently the parameter in the pooled regression without assum-
ing either the fixed effect or random effect) together with the following two
matrices

R = INK − J(J ′X ′XJ)−1J ′X ′X

D = INK −N−1JJ ′

where R and D are idempotent matrices, which will be repeatedly used
later. All the sumations

∑
are over i = 1, 2, · · · , N unless otherwise spec-

ified.
The null hypothesis being tested is H0 : β1 = β2 = · · · = βN (= β = βW ).

Consider the following equivalent formulation of the null

H0 : (β1 − βW , β2 − βW , · · · , βN − βW )′

= β − JβW = (INK − J(J ′X ′XJ)−1J ′X ′X)β = Rβ = 0

The conventional F -ratio test for testing H0 : Rβ = 0 (without adjust-
ment for the degrees of freedom) is

f =
β̂′R′(R(X ′X)−1R′)−1Rβ̂

(y −Xβ̂)′(y −Xβ̂)

where

β̂ = (X ′X)−1X ′y = (β̂1β̂2 · · · β̂N )′

which is the simple OLS estimate of the individual equations.
To the question of whether or not to pool, the general answer from

the prediction point of view is that shrinking the individual least squares
estimators towards a common mean has been found to be better than the
use of either individual least squares estimators or the pooled estimator. As
for what the common mean ought to be, there have been many suggestions
in the literature. See the survey in Maddala (1991). Here, we discuss the
following five predictors for E(y) = Xβ. They are P0, PA, PW , PAS and
PWS which are closely related to each other and are defined below. The
main results are presented here.

I. Predictor ignoring H0:

P0 = Xβ̂.
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II. Predictors incorporating H0:

PA = XJ(N−1
∑

β̂i) = N−1XJJ ′β̂

which uses the simple average estimator and

PW = XJ(
∑

X ′
iXi)−1(

∑
X ′

iXiβ̂i) = XJ(J ′X ′XJ)−1J ′X ′Xβ̂

which uses the weighted average estimator (or the pooled estimator).
III. Predictors shrinking β̂ towards simple average (N−1

∑
β̂i) and weighted

average (
∑

X ′
iXi)−1(

∑
X ′

iXiβ̂i), respectively:

PAS = X(N−1JJ ′β̂ + (1− f−1Ca)(β̂ −N−1JJ ′β̂))
= PA + (1− f−1Ca)(P0 − PA)

= Xβ̂ − f−1CaXDβ̂ = P0 − f−1Ca(P0 − PA)

and

PWS = X(J(J ′X ′XJ)−1J ′X ′Xβ̂

+ (1− f−1Cw)(β̂ − J(J ′X ′XJ)−1J ′X ′Xβ̂))
= P0 − f−1Cw(P0 − PW )

where Ca and Cw are positive characterizing scalars.
Now let us study the performance properties of the five predictors P0,

PA, PW , PAS and PWS for Xβ. We give the analytical results of the
predictive bias vector PB and the predictive mean squared error PM for
any predictor P̂ for Xβ defined as

PB(P̂ ) = E(P̂ −Xβ)

PM(P̂ ) = E(P̂ −Xβ)′(P̂ −Xβ) = PV (P̂ )

where PV (P̂ ) is the predictive variance if P̂ is unbiased for Xβ. We obtain
the following results which are derived in the Appendix.

PB(P0) = 0 (1)
PV (P0) = σ2NK (2)
PB(PA) = −XDβ (3)

PM(PA) = θA + σ2N−2tr(J ′(X ′X)−1JJ ′X ′XJ) (4)
PB(PW ) = −XRβ (5)

PM(PW ) = θW + σ2K (6)
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where

θA = β′D′X ′XDβ and θW = β′R′X ′XRβ.

If the null hypothesis H0 is true, it is easy to show that Dβ = Rβ = 0.
All the three predictors are unbiased. Further, we have

PV (PW ) ≤ PV (P0).

To compare PA and PW , employing result (2) of Theorem 2 on page 201
in Magnus and Neudecker (1988), we observe that

tr(J ′(X ′X)−1JJ ′X ′XJ)
= tr(J ′(X ′X)−1/2(X ′X)−1/2JJ ′(X ′X)1/2(X ′X)1/2J)

≥ tr(J ′(X ′X)−1/2(X ′X)1/2J)2 = tr(J ′J)2 = tr(
∑

IK)2 = N2K

or

N−2tr(J ′(X ′X)−1JJ ′X ′XJ) ≥ K (7)

where it follows that PV (PW ) ≤ PV (PA).
Thus when H0 is tenable, PW is the best choice among P0, PA and PW .

On the other hand, when H0 is not tenable, P0 is unbiased since H0 is not
incorporated while PA and PW are generally biased. So let us compare
the biased predictors PA and PW . Examining the norms of predictive bias
vectors, we see that

‖PB(PA)‖ − ‖PB(PW )‖
= β′DX ′XDβ − β′R′X ′XRβ(= θA − θW )
= δ′(J ′X ′XJ)−1δ ≥ 0

where δ = J ′X ′X(INK − N−1JJ ′)β. Thus PW is better than PA with
respect to the criterion of norm of predictive bias vector. Also we find that

θA − θW ≥ 0. (8)

Using (7) and (8), it follows from (4) and (6) that PW has smaller pre-
dictive mean squared error in comparison to PA.

The following results are small disturbance asymptotic approximations.
Let us assume that disturbances are small and normally distributed, u ∼
N(0, INK). For the predictors PAS and PWS , the predictive bias vectors
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to the order O(σ2) are

PB(PAS) = −σ2 CaN(T −K)
θW

XDβ (9)

PB(PWS) = −σ2 CwN(T −K)
θW

XRβ (10)

while the predictive mean squared errors to the order O(σ4) are given by

PM(PAS = σ2NK − σ4 N(T −K)(N(T −K) + 2)

θW
Ca

„
2λ− θA

θW
Ca

«
(11)

PM(PWS) = σ2NK − σ4 N(T −K)(N(T −K) + 2)

θW
Cw(2λ− Cw) (12)

where

λ = [(N − 1)K − 2]/[N(T −K) + 2]. (13)

Comparing with respect to the criterion of norm of predictive bias vector
to order O(σ2), we find PWS to be better than PAS when(

Cw

Ca

)2

<
θA

θW

which will be satisfied at least so long as Cw < Ca by virtue of (8) (i.e.,
θA/θW ≥ 1).

It is interesting to note that when H0 is not true, according to small
disturbance asymptotic theory, P0 is unbiased and consistent, PA and PW

are neither unbiased nor consistent, PAS and PWS are not unbiased but
consistent.

From (2), (11) and (12), it is seen that PAS and PWS have smaller
predictive mean squared errors, to the order O(σ4), in comparison to the
predictive variance of P0 when

0 < Ca <
2λθW

θA
;λ > 0 (14)

0 < Cw < 2λ;λ > 0 (15)

Notice that the range of Cw is wider than the range of Ca, using (8).
If we minimize (11) with respect to Ca, the optimal value of Ca is λθW /θA

and then the associated value of PM(PAS) is

PM(PAS)opt = σ2NK − σ4 N(T −K)(N(T −K) + 2)λ2

θA
. (16)
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Similarly, the optimal value of PM(PWS) is

PM(PWS)opt = σ2NK − σ4 N(T −K)(N(T −K) + 2)λ2

θW
. (17)

From (8) we observe that PM(PWS)opt ≤ PM(PAS)opt, implying that
PWS with optimal Cw is the best choice among P0, PA, PW , PAS and PWS .

The general conclusion is to use the shrinkage estimator which shrinks
towards the weighted average βW .

3. THE CASE OF LAGGED DEPENDENT VARIABLES

In the previous section, we considered the case of homoskedastic errors
and exogenous explanatory variables. In empirical applications, however,
we often have to include lagged dependent variables. There is considerable
evidence that estimation of static panel data models from dynamic panel
data introduces substantial biases. See, for instance, Doel and Kiviet (1993)
and Ridder and Wansbeek (1990).

However, we have found that extending the results in the previous section
on small-sigma asymptotics to the case of lagged dependent variable is
extremely cumbersome, and no analytical results can be obtained. The
results from the Monte Carlo study in Hu and Maddala (1994), however,
indicate that the results in the previous section probably carry over to
the case where lagged dependent variables are present. They consider the
following model:

yit = α + λiyi,t−1 + β1ixit + β2ixi,t−1 + uit

for i = 1, 2, · · · , N and t = 1, 2, · · · , T . In their simulation they consider
the case N = 49 and T = 21 which corresponds to the empirical application
reported in section 4 here. All variables are assumed to be in logs so that
the short-run elasticity is given by β1i and the long-run elasticity is given
by (β1i + β2i)/(1 − λi). They consider the following estimators for the
parameter vector θi = (α, λi, β1i, β2i)

(i) θi estimated from time series data on the i-th cross-section unit.
(ii) θi estimated from the pooled cross-section and time-series data. This

assumes θ1 = θ2 = · · · = θN and thus neglects parameter heterogeneity.
(iii) The Stein-rule estimator

θ̃i =
(
1− c

F

)
θ̂i +

c

F
θ̂p

where θ̂i is the OLS estimator of θi from the data on the i-th cross-section
unit and θ̂p is the estimator of θ from the pooled data. F is the F -statistic
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for testing the hypothesis θ1 = θ2 = · · · = θN and

c = [(N − 1)k − 2]/[N(T − k) + 2]

where k is the number of explanatory variables.
(iv) The shrinkage estimator considered in Smith (1973) and Maddala

(1991) which is discussed in the next section.
(v) The within group estimator: This is the pooled regression with

dummy variables.
(vi) The between group estimator: This is based on time averages.

The parameter estimates from this regression are usually interpreted as
measuring the long-run effect. See for instance Baltagi and Griffin (1984).

(vii) Estimator obtained from aggregated data.
Their conclusions from a Monte Carlo study based on 2,000 replica-

tions and using the root mean squared error (RMSE) as the criterion of
choice among the different estimators, is that the shrinkage estimator (iv)
dominates all the rest for both the estimation of short-run and long-run
elasticities, as well as for out of sample prediction.

Thus, for the estimation of the short-run and long-run elasticities for each
cross-section unit, the shrinkage estimator does the best. It also does the
best so far as prediction is concerned. This leads us to conjecture that the
conclusions from the small-sigma results presented in the previous section
carry over to the case of lagged dependent variables.

4. AN EMPIRICAL APPLICATION

In this section we apply the shrinkage estimators to regressions of the
per capita electricity residential demand and the per capita natural gas
residential demand in the US. We are interested in estimating the short
run and long run income elasticities and price elasticities of the U. S. (for
each of the individual states). As discussed earlier, possible ways to do this
can be based on individual regressions, pooled regressions, and shrinkage
regressions. Consider the following cross-section regressions

yi = Xiβi + ui (18)

for i = 1, 2, · · · , N . βi is the regression parameter with dimension K. yi

is the per capita electricity residential demand or the per capita natural
gas residential demand. For each yi, t = 1, 2, · · · , T . Xi is a set of exoge-
nous variables, such as price, real per capita income, heating degree days
and cooling degree days. Usually the lagged dependent variables are also
included in this type of models.

The traditional approach to estimating regression coefficients βi with
either pooled cross-section and time series data or with panel data is a
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dichotomy of either estimating βi from the data on the ith cross-section
unit or from the pooled sample. As we have discussed, shrinking each
individual βi from the ith cross-section towards the weighted average βW

proves to be the best among the predictors given above. Assume that

yi ∼ N(Xiβi, Vi) (19)

in which we are interested in the special case that Vi = σ2
i I.

The shrinkage estimator discussed in Smith (1973) and Maddala (1991)
is given as

β∗
i =

(
1
s2

i

X ′
iXi + Σ∗−1

)−1 (
1
s2

i

X ′
iXiβ̂i + Σ∗−1

β̂W

)
(20)

where

s2
i =

1
T + 2

(yi −Xiβ
∗
i )′(yi −Xiβ

∗
i ) (21)

and

Σ∗ =
1

N −K − 1

∑
(β∗

i − β̂W )(β∗
i − β̂W )′ (22)

Further, β̂i is the OLS estimator based on each separate cross-section unit,
i.e., β̂i = (X ′

iXi)−1X ′
iyi. Note that β̂W = N−1

∑
β∗

i is the simple average
of the shrinkage estimates. Equation (20) also shows that β∗

i is a weighted
average of the OLS estimators β̂i and an estimator for the prior mean β̂W

with the weights inversely proportional to the variances.
Equations (20), (21), and (22) have to be solved iteratively. The initial

iteration uses the OLS estimate β̂i to compute β̂W , s2
i and Σ∗. As a matter

of fact, the initial values of β̂W can be set as either β̂W = N−1
∑

β̂i, or
βW = (

∑
X ′

iXi)−1(
∑

X ′
iXiβ̂i), or even the pooled regression estimates.

We have found that all give the same results if the iteration converges. In
practice, (21) and (22) are estimated as

s2
i =

1
T + 2 + νi

(νiλi + (yi −Xiβ
∗
i )′(yi −Xiβ

∗
i )) (21′)

and

Σ∗ =
1

N −K − 1 + δ

(
R +

∑
(β∗

i − β̂W )(β∗
i − β̂W )′

)
(22′)

where, as discussed in Smith (1973), νi, λi, R and δ are parameters arising
from prior specifications. Approximations to vague priors are obtained by
setting νi = 0, δ = 1, and R to be a diagonal matrix with small positive
entries (e.g., 0.001).
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Now, let us turn to the problem of estimating the short-run and long-
run elasticities of demand for electricity and natural gas for each of the
states. The data are annual from 1970 to 1990 for the 49 states in the U.
S. First a brief description of the data. Annual data on state residential
electricity and gas price, residential electricity and gas consumption, and
population used in this study were obtained from the State Energy Data
System of the Energy Information Administration (1993). Weather data
were obtained from the Local Climatological Data Series, prepared by the
National Oceanographic and Atmospheric Administration (1993). Annual
state income data were drawn from the Bureau of Labor Statistics and the
annual Consumer Price Index for the U. S. was from the CITIBASE.

With only 21 time series observations, the sample may be rather small
and would result in very few degrees of freedom when we include more
right hand side variables. Thus, the variables are lagged only one period if
lagged variables are included. The regressions takes the following form:

yit = αi0+αi1yi,t−1+αi2x
1
it+αi3x

1
i,t−1+αi4x

2
it+αi5x

2
i,t−1+αi6x

3
it+αi7x

4
it+uit

or

yit = Xitαi + uit

for individual states i = 1, 2, · · · , 49 and years t = 1, 2, · · · , 21 with the
first year being 1970. Note that αi = (αi0, αi1, · · · , αi7)′ , the coefficient
vector, and Xit is a matrix of all the right-hand side variables.

The variables for the electricity regression are
yit = ln(Residential electricity per capita consumption);
x1

it = ln(Per capita personal income);
x2

it = ln(Residential electricity price);
x3

it = Heating degree days (HDD);
x4

it = Cooling degree days (CDD).
For the natural gas regression, we have

yit = ln(Residential natural gas per capita consumption);
x1

it = ln(Per capita personal income);
x2

it = ln(Residential natural gas price);
with x3

it and x4
it unchanged.

For the ith cross section unit the elasticities are calculated as
Short run income elasticity: iSR = αi2

Long run income elasticity: iLR = αi2+αi3
1−αi1

Short run price elasticity: pSR = αi4

Long run price elasticity: pLR = αi4+αi5
1−αi1

respectively. First, the null H0 : α1 = α2 = · · · = α49 is tested using the F
test, which is given by

F = [(RRSS − URSS)/J ]/[URSS/(NT −NK)]
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where J is number of linear restrictions imposed. The regressions are es-
timated separately for each individual states. Then the pooled regression
(without adding dummy variables) is estimated imposing the null that the
coefficient estimates are the same for the different states. For the electricity
regression, based on the above unrestricted and restricted estimates, the F
test-statistic for testing H0 is F ((49− 1)× 8, 49× (20− 8)) = 1.655. The
pooled regression is also estimated with 49 intercept dummies assuming
fixed effects, i.e.,

yit = Xitαi +
49∑

s=1

δsds + uit

where

dst =

{
1 if t ∈ (T × (s− 1) + 1, T × s)
0 otherwise.

and there is no overall constant term in the regression matrix Xit. In this
case the F test is F ((49 − 1) × 7, 49 × (20 − 8)) = 1.134. The 5% critical
values of the F statistic is 1.00. In both cases, the null hypothesis is rejected
for the electricity regression. The two test F statistics for the natural gas
regression are 2.312 and 1.591, respectively. Again, the null hypothesis
is rejected. As discussed earlier, when H0 is not true, PWS is the best
choice among P0, PA, PW , PAS and PWS . For comparison purposes, we
report the regression results in three cases: (1) individual OLS estimates,
(2) pooled regression (without dummies), and (3) shrinkage estimates. The
parameter estimates and the t- values for the OLS and shrinkage estimator
are reported in Table A1 to A4 in the Appendix. In general, the OLS
estimates are quite different from each other, while the shrinkage estimates
are shrunk to the converged common mean with very small variations.

Table 1 gives the simple average estimates, the mean of the shrinkage
estimates, and the pooled regression estimates. The elasticities based on
the average parameter estimates from Table 1 are calculated. Note that
in order to smooth out abnormal values we do not take the average of the
individual elasticities. These elasticities are summarized in Table 2.

From Table 2, we observe that for both regressions, the elasticities based
on simple average and the shrinkage are approximately the same, while
the pooled regression gives quite different results. There is, however, one
exception. For the long run income elasticity in the natural gas regression,
the simple average gives a negative value, and the pooled regression gives
a number greater than one. The long run income elasticity calculated
from the shrinkage estimate is 0.0583. Of course, one can explain the
results from different angles. Consider natural gas being mainly used for
heating purposes, it seems that the long run income elasticity based on the
shrinkage estimates is preferred.
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TABLE 1.

Parameter estimates by different approaches

ELECTRICITY REGRESSION NATURAL GAS REGRESSION

Variable (1) (2) (3) (1) (2) (3)

constant −5.2607 −4.2474 −0.2490 −0.6341 −2.0339 −0.2649

yi,t−1 0.6089 0.6888 0.9282 0.2277 0.5504 0.9850

x1
i,t 0.3949 0.3337 0.1461 0.2812 0.3110 0.0841

x1
i,t−1 −0.0198 −0.0318 −0.1372 −0.5386 −0.2848 −0.0632

x2
i,t −0.1334 −0.1312 −0.1960 −0.1102 −0.1033 −0.0983

x2
i,t−1 0.0727 0.0795 0.1285 −0.0527 −0.0361 0.0861

x3
i,t 0.1812 0.1670 0.0632 0.5180 0.4066 0.0367

x4
i,t 1.0099 1.0198 0.3074 0.4640 −0.9341 −0.0474

Note
(1) Simple average estimates of individual OLS estimates;
(2) Mean of shrinkage estimates;
(3) Weighted average estimates, or pooled regression estimates.

TABLE 2.

Income and price elasticities

ELECTRICITY REGRESSION NATURAL GAS REGRESSION

(1) (2) (3) (1) (2) (3)

iSR 0.3949 0.3337 0.1461 0.2812 0.3110 0.0841

iLR 0.9591 0.9701 0.1240 −0.3333 0.0583 1.3933

pSR −0.1334 −0.1312 −0.1960 −0.1102 −0.1033 −0.0983

pLR −0.1552 −0.1661 −0.9401 −0.2109 −0.3101 −0.8133

Note
(1) Based on simple average estimates of individual OLS estimates;
(2) Based on mean of shrinkage estimates;
(3) Based on weighted average estimates, or the pooled regression estimates.
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TABLE 3.

Forecast (last two observations) RMSE’s of the electricity regression

Period Pooled OLS Shrinkage

regression Estimator Estimator

Electricity T − 1 0.000451 0.000718 0.000505

regression T 0.000706 0.001153 0.000911

Natural gas T − 1 0.002486 0.001309 0.001585

regression T 0.001403 0.001703 0.002174

We also compare the forecasting results of the energy demand at the state
level using different estimators. For forecast purposes, the last two obser-
vations of each state are excluded when estimating the regressions. The
forecast root mean squared errors are reported in Table 3. For the electric-
ity regression the pooled regression gives the smallest root mean squared
errors, while for the natural gas regression the OLS gives the smallest root
mean squared errors, although all the three approaches have root mean
squared errors with little difference. In both cases, the shrinkage estimator
improves upon only either the OLS or the pooled regression. But, as shown
in the estimation of elasticities, both the OLS and the pooled regression
give bad elasticity estimates. On the other hand the regression parameters
based on the shrinkage estimator are better. It is not uncommon to find
(particularly in the presence of multicollinearity) that a method that gives
bad estimates of individual parameters, nevertheless can do well when it
comes to forecasting. Given that the shrinkage estimator considered here
has been found (in Monte Carlo studies) to dominate the other estimators
and that in the empirical example considered, its performance in forecast-
ing is not uniformly dominated by the others, the shrinkage method can be
recommended for the estimation of individual heterogeneous parameters.

When applying the shrinkage estimators, we found that the shrinkage
estimates converge at different rates. For some variables, such as the lagged
dependent variable in the elasticity regression, the convergence is rather
slow, while other shrinkage estimates have already reached their ”common
mean”. We programmed the iteration to be stopped when condition

8∑
n=1

var(α∗
i,n) ≤ 0.001, for i = 1, 2, · · · , 49,

is satisfied, where α∗
i,n is the shrinkage estimate of the nth parameter. For

the electricity regression, it required 13 iterations, whereas, it required 117
iterations for the natural gas regression. If the iteration is done leaving out
R completely, soon

∑∗ will become singular because the distance between



A COMPARATIVE STUDY OF DIFFERENT SHRINKAGE ESTIMATORS 15

the shrinkage estimates and the common mean towards which the shrink-
age estimates are approaching disappears. The calculation stops without
proper convergence. By adding R,

∑∗ is always positive definite. The
selection of R will affect the number of iterations. However, once the con-
vergence criterion is set, the final results are basically the same.

5. CONCLUSIONS

The paper discusses the role of the shrinkage estimators in panel data
models. In particular, the small disturbance asymptotic approximations
are developed for the shrinkage estimators. It is shown that in general
the shrinkage estimators have superior properties than other choices in the
estimation of panel data models.

As an illustration example, we applied the shrinkage estimator to es-
timate the income elasticities and price elasticities in the short run and
long run, for the residential electricity and residential natural gas demand
equations. The estimates were quite different for the different states. The
shrinkage estimators were close to the mean of the estimators for the indi-
vidual states. The estimates from the pooled model were however, much
different. The theoretical analysis presented in Section 2 and the tests
for equality of the coefficients, however, suggest that the pooled estimates
should not be used. The estimates of the long-run price elasticities were
about 4-5 times higher from the pooled estimator than the average of the
estimates for the individual states. These elasticities are very misleading for
policy purposes. Further analysis based on prediction errors showed that
the shrinkage estimators should be preferred to the individual estimators
or the pooled estimators.

APPENDIX

In this Appendix, the derivation of our main results are presented. For
the sake of completeness and ready reference, we give the exact expressions
related to P0, PA, and PW although they are extremely straightforward.

First we observe that

E(u) = 0 and E(u′u) = INK .

Now we have

P0 −Xβ = X(β̂ − β) = σX(X ′X)−1X ′u

so that

E(P0 −Xβ) = 0
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E(P0 −Xβ)′(P0 −Xβ) = σ2trX(X ′X)−1X ′

= σ2trINK

= σ2NK

which are the results (1) and (2).

PA −Xβ = N−1XJJ ′β̂ − β

= N−1XJJ ′(β̂ − β)−X(INK −N−1JJ ′)β
= σN−1XJJ ′(X ′X)−1X ′u−XDβ

so that

E(PA −Xβ) = −XDβ

E(PA −Xβ)′(PA −Xβ)
= σ2N−2trXJJ ′(X ′X)−1X ′E(uu′)X(X ′X)−1JJ ′X ′ + β′DX ′XDβ

which lead to results (3) and (4).
Similarly, we have

PW −Xβ = XJ(J ′X ′XJ)−1J ′X ′Xβ̂ − β

= XJ(J ′X ′XJ)−1J ′X ′X(β̂ − β)
− X(INK − J(J ′X ′XJ)−1J ′X ′X)β
= σXJ(J ′X ′XJ)−1J ′X ′u−XRβ

so that

E(PW −Xβ) = −XRβ

E(PW −Xβ)′(PW −Xβ)
= σ2trXJ(J ′X ′XJ)−1J ′X ′E(uu′)XJ(J ′X ′XJ)−1J ′X ′ + β′R′X ′XRβ

= σ2trIK + β′R′X ′XRβ

which provide the results (5) and (6).
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Now consider shrinkage predictors. From the definition of F -ratio on
page 4 we notice that

− 1

f
= − (y −Xβ̂)′(y −Xβ̂)

β̂′R′(R(X ′X)−1R′)−1Rβ̂

= − σ2u′Mu

(β + σ(X ′X)−1X ′u)′Ω(β + σ(X ′X)−1X ′u)

= − σ2u′Mu

θw + 2σβ′Ω(X ′X)−1X ′u + σ2u′X(X ′X)−1Ω(X ′X)−1X ′u

= −σ2 u′Mu

θw

„
1 + 2σ

β′Ω(X ′X)−1X ′u

θw
+ σ2 u′X(X ′X)−1Ω(X ′X)−1X ′u

θw

«−1

or

− 1
f

= −σ2 u′Mu

θw
+ 2σ3 u′Mu · β′Ω(X ′X)−1X ′u

θ2
w

+ · · ·

where

M = INT −X(X ′X)−1X ′

Ω = R′(R(X ′X)−1R′)−1R

and

θw = β′Ωβ

= β′R′X ′XRβ

= β′(X ′X −X ′XJ(J ′X ′XJ)−1J ′X ′X)β

Next, we observe that

PAS −Xβ = X(β̂ − β)− f−1CaXDβ̂

= σX(X ′X)−1X ′u− f−1Ca(XDβ + σXD(X ′X)−1X ′u)

Substituting the expression for (−f−1) and retaining terms up to order
Op(σ3), we find

PAS −Xβ = σX(X ′X)−1X ′u− σ2 Cau′Mu

θw
XDβ

−σ3 Cau′Mu

θw
XD

(
INK − 2

θw
ββ′Ω

)
(X ′X)−1X ′u
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so that the predictive bias vector to the order O(σ2) is

PB(PAS) = σX(X ′X)−1X ′E(u)− σ2 Ca

θw
E(u′Mu)XDβ

= −σ2 CaN(T −K)
θw

XDβ

which is the result (9).
Similarly, the predictive mean squared error to order O(σ4) is given by

PM(PAS) = E(PAS −Xβ)′(PAS −Xβ)

= σ2E(u′X(X ′X)−1X ′u)− 2σ3 Ca

θw
E(u′Mu · β′DX ′u)

− σ4 Ca

θw
E

(
2u′Mu · u′XD

(
INK − 2

θw
ββ′Ω

)
(X ′X)−1X ′u

− Caβ′DX ′XDβ

θw
(u′Mu)2

)

Using the following result for any two fixed matrices A1 and A2 (assume
A1 to be symmetric)

E(u′A1u · u′A2u) = (trA1)(trA2) + 2(trA1A2)

and employing the normality of u(u ∼ N(0, INT )), we see that

E(u′X(X ′X)−1X ′u) = NK
E(u′Mu · β′DX ′u) = 0

E

(
u′Mu · u′XD

(
INK − 2

θw
ββ′Ω

)
(X ′X)−1X ′u

)
= (trM)

(
trXD

(
INK − 2

θw
ββ′Ω

)
(X ′X)−1X ′

)
= (trM)

(
trD − 2

θw
β′ΩDβ

)
= N(T −K)((N − 1)K − 2)
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because

ΩD = R′(R(X ′X)−1R′)RD

= R′(R(X ′X)−1R′)(INK − J(J ′X ′XJ)−1J ′X ′X)(INK −N−1JJ ′)

= R′(R(X ′X)−1R′)(INK − J(J ′X ′XJ)−1J ′X ′X)

= Ω

E(u′Mu)2 = (trM)2 + 2(trM)

= N(T −K)(N(T −K) + 2)

Substituting these terms we find the desired result. Similar results for
PWS can be obtained by just replacing D by R.

APPENDIX A

Table A1.

OLS estimates and t-values of individual states (Electricity regression)

STATE yt−1 x1
t x1

t−1 x2
t x2

t−1

AK 0.766 0.221 0.178 0.031 −0.069

7.698 1.610 0.911 0.237 −0.523

AL 0.028 0.657 0.320 −0.126 −0.119

0.124 1.919 0.717 −0.897 −0.784

AR 0.454 0.560 0.242 0.250 −0.516

2.447 0.983 0.482 0.734 −1.508

AZ 0.633 0.808 −0.342 −0.086 −0.050

4.998 3.066 −1.252 −0.585 −0.312

CA 0.668 0.382 −0.169 −0.274 0.099

4.841 1.483 −0.717 −3.327 1.550

CO 0.493 −0.003 0.611 0.159 −0.029

2.532 −0.004 0.971 0.584 −0.093

CT 0.638 0.331 −0.065 −0.069 −0.015

6.706 1.750 −0.336 −1.251 −0.278

DE 0.697 −0.624 0.784 −0.638 0.558

3.719 −0.591 0.670 −2.490 2.359

FL 0.556 1.225 −0.758 −0.164 0.008

4.305 6.111 −3.125 −2.520 0.096

GA 0.326 0.779 −0.060 0.068 −0.087

1.936 2.902 −0.195 0.565 −0.625

IA 0.628 0.153 0.321 0.141 −0.092

5.064 0.840 1.924 0.575 −0.350
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Table A1—Continued

STATE yt−1 x1
t x1

t−1 x2
t x2

t−1

ID 0.681 −0.327 0.645 0.281 −0.459

7.823 −1.486 2.328 1.942 −2.983

IL 0.245 0.555 0.151 0.026 −0.053

1.849 2.323 0.633 0.244 −0.431

IN 0.672 0.249 0.084 −0.005 −0.005

6.088 1.908 0.554 −0.060 −0.046

KS 0.890 0.267 −0.193 −0.443 0.461

4.377 0.603 −0.472 −2.143 2.009

KY 0.414 0.749 0.480 −0.112 0.258

2.120 2.030 1.245 −0.589 1.081

LA 0.994 1.216 −1.379 0.031 0.179

6.208 2.768 −2.552 0.166 1.086

MA 0.514 0.607 −0.265 −0.091 −0.069

3.723 2.743 −1.018 −1.168 −0.948

MD 0.714 0.533 −0.157 −0.107 0.109

6.677 2.605 −0.649 −1.530 1.616

ME 0.832 0.516 −0.463 −0.180 0.154

20.545 3.179 −2.814 −2.768 2.475

MI 0.753 0.273 −0.124 −0.045 −0.003

6.434 2.350 −1.103 −0.521 −0.037

MN 0.708 −0.106 0.366 0.005 0.159

4.103 −0.547 2.154 0.039 0.914

MO 0.698 0.286 0.149 0.245 −0.295

4.590 0.736 0.369 0.867 −0.896

MS 0.261 0.775 0.085 −0.277 −0.114

1.268 2.664 0.222 −2.068 −0.952

MT 0.961 0.026 0.098 −0.602 0.528

9.110 0.085 0.350 −3.160 2.420

NE 0.620 0.773 −0.365 −0.188 0.098

7.849 6.788 −2.613 −2.606 1.247

NC 0.918 −0.076 0.079 −0.227 0.033

17.254 −0.666 0.809 −0.788 0.103

ND 0.787 0.361 −0.009 −0.054 0.042

5.797 1.877 −0.053 −0.360 0.310

NH 0.700 0.661 −0.529 −0.094 −0.061

10.432 3.609 −2.828 −1.506 −0.906
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Table A1—Continued

STATE yt−1 x1
t x1

t−1 x2
t x2

t−1

NJ 0.762 −0.036 0.127 −0.315 0.263

10.422 −0.175 0.585 −5.889 5.064

NM 0.503 1.134 −0.391 −0.857 0.733

2.934 2.212 −0.705 −4.129 4.293

NV 0.301 0.726 −0.296 −0.102 −0.089

1.237 1.815 −0.825 −0.661 −0.490

NY 0.829 0.361 −0.204 −0.191 0.139

7.323 1.884 −0.941 −3.271 2.744

OH 0.670 0.437 0.007 −0.081 0.043

7.141 2.282 0.037 −0.899 0.477

OK 0.634 −0.093 0.524 −0.593 0.361

1.882 −0.152 0.780 −2.044 1.287

OR 0.056 0.123 0.155 −0.272 0.141

0.277 0.560 0.725 −2.680 1.191

PA 0.523 0.517 0.021 −0.221 0.162

5.603 2.737 0.105 −2.968 2.069

RI 0.783 0.349 −0.222 −0.187 0.079

8.099 1.164 −0.710 −3.106 1.287

SC 0.602 0.752 −0.255 −0.092 0.065

3.419 2.833 −0.937 −0.670 0.418

SD 0.877 0.039 0.048 −0.065 −0.066

10.000 0.211 0.313 −0.236 −0.273

TN 0.395 0.251 0.025 −0.003 −0.028

1.986 0.610 0.065 −0.020 −0.174

TX 0.620 0.307 0.089 −0.403 0.232

3.327 0.855 0.237 −2.931 1.712

UT 0.576 −0.481 0.731 −0.069 0.155

3.710 −1.194 1.595 −0.487 1.038

VA 0.496 1.056 −0.487 0.094 −0.131

3.603 2.721 −1.162 0.934 −1.205

VT 0.473 −0.093 −0.116 −0.486 0.531

2.571 −0.104 −0.127 −1.302 1.433

WA 0.359 0.208 0.166 0.348 −0.430

1.506 0.271 0.237 1.332 −1.738

WI 0.473 0.810 −0.275 −0.163 0.350

2.360 2.302 −0.814 −0.878 1.548

WV 0.840 0.475 −0.296 −0.063 −0.062

13.302 3.138 −1.643 −1.138 −0.858

WY 0.814 0.683 −0.037 −0.271 0.465

19.307 3.181 −0.208 −2.290 3.387
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Table A2.

Shrinkage estimates and t-values of individual states (Electricity regression)

STATE yt−1 x1
t x1

t−1 x2
t x2

t−1

AK 0.734 0.316 −0.009 −0.107 0.093

28.315 12.382 −0.296 −3.470 3.089

AL 0.655 0.350 −0.047 −0.158 0.061

18.870 13.598 −1.304 −5.351 2.117

AR 0.676 0.337 −0.032 −0.133 0.072

16.629 12.383 −0.828 −3.864 2.182

AZ 0.666 0.339 −0.057 −0.142 0.077

27.401 12.984 −1.900 −4.764 2.595

CA 0.582 0.354 −0.120 −0.188 0.050

21.633 13.966 −3.694 −6.834 1.839

CO 0.718 0.325 −0.014 −0.117 0.084

19.829 12.046 −0.365 −3.331 2.507

CT 0.611 0.338 −0.095 −0.138 0.063

33.120 13.349 −3.272 −5.453 2.566

DE 0.700 0.333 −0.024 −0.138 0.079

14.428 12.028 −0.543 −3.845 2.417

FL 0.621 0.357 −0.094 −0.163 0.076

20.762 13.723 −2.956 −5.701 2.715

GA 0.690 0.332 −0.028 −0.122 0.079

29.479 12.805 −0.902 −4.034 2.632

IA 0.728 0.316 0.006 −0.111 0.088

23.444 12.019 0.181 −3.318 2.698

ID 0.718 0.335 0.008 −0.123 0.068

19.274 12.674 0.201 −3.582 2.054

IL 0.673 0.322 −0.042 −0.122 0.081

21.750 12.451 −1.205 −4.091 2.694

IN 0.699 0.326 −0.019 −0.112 0.088

34.472 12.905 −0.639 −3.911 2.932

KS 0.738 0.321 −0.002 −0.114 0.096

19.079 12.041 −0.064 −3.450 2.998

KY 0.784 0.316 0.043 −0.087 0.098

33.390 12.096 1.339 −2.737 3.092

LA 0.728 0.326 −0.006 −0.114 0.090

25.194 12.370 −0.186 −3.615 2.870

MA 0.616 0.350 −0.092 −0.172 0.043

28.482 13.641 −3.062 −6.253 1.619

MD 0.747 0.322 0.006 −0.119 0.104

53.696 12.596 0.219 −4.347 4.078

ME 0.685 0.330 −0.045 −0.116 0.105

39.161 12.632 −1.511 −3.776 3.490
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Table A2—Continued

MI 0.645 0.335 −0.060 −0.147 0.055

32.520 13.431 −2.081 −5.277 2.005

MN 0.692 0.316 −0.027 −0.106 0.092

21.943 11.888 −0.810 −3.092 2.825

MO 0.737 0.322 0.008 −0.112 0.085

22.247 11.753 0.223 −3.134 2.485

MS 0.658 0.353 −0.045 −0.164 0.056

16.642 13.380 −1.188 −5.084 1.805

MT 0.768 0.334 0.031 −0.130 0.074

21.838 12.557 0.854 −3.665 2.225

NE 0.679 0.340 −0.043 −0.126 0.103

40.549 13.355 −1.483 −4.405 3.567

NC 0.783 0.319 0.045 −0.106 0.088

20.318 12.042 1.222 −2.910 2.581

ND 0.771 0.318 0.030 −0.099 0.088

26.341 12.104 0.909 −2.994 2.720

NH 0.551 0.352 −0.139 −0.158 0.049

29.519 13.808 −4.866 −6.033 1.875

NJ 0.632 0.330 −0.084 −0.150 0.099

41.613 13.041 −2.963 −6.137 4.283

NM 0.698 0.332 −0.033 −0.139 0.084

19.135 12.531 −0.864 −4.240 2.625

NV 0.581 0.358 −0.109 −0.168 0.051

11.463 13.612 −2.534 −5.471 1.774

NY 0.717 0.326 −0.028 −0.136 0.099

51.651 13.040 −0.983 −5.932 4.530

OH 0.728 0.331 −0.006 −0.124 0.081

58.152 13.447 −0.217 −4.998 3.164

OK 0.703 0.333 −0.019 −0.132 0.081

15.552 12.139 −0.463 −3.742 2.427

OR 0.567 0.361 −0.105 −0.174 0.062

12.470 14.354 −2.570 −5.896 2.158

PA 0.704 0.343 −0.029 −0.148 0.082

56.200 13.529 −1.039 −5.399 3.087

RI 0.651 0.336 −0.066 −0.147 0.069

33.929 13.111 −2.224 −5.785 2.819

SC 0.715 0.334 −0.012 −0.120 0.095

40.960 12.962 −0.395 −4.045 3.157

SD 0.756 0.319 0.023 −0.103 0.088

22.488 12.131 0.681 −3.006 2.667

TN 0.617 0.352 −0.071 −0.146 0.066

14.787 13.646 −1.814 −4.771 2.221
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Table A2—Continued

TX 0.691 0.333 −0.027 −0.147 0.074

21.404 12.686 −0.794 −4.785 2.419

UT 0.686 0.322 −0.038 −0.114 0.095

23.162 12.462 −1.092 −3.915 3.208

VA 0.679 0.331 −0.039 −0.115 0.088

37.650 12.878 −1.339 −4.074 3.179

VT 0.657 0.340 −0.053 −0.143 0.073

10.871 12.235 −1.024 −3.755 2.111

WA 0.642 0.352 −0.052 −0.148 0.058

15.049 13.793 −1.296 −4.941 1.947

WI 0.694 0.328 −0.036 −0.111 0.097

22.918 12.389 −1.057 −3.359 3.053

WV 0.759 0.342 0.026 −0.129 0.058

63.605 13.785 0.960 −4.944 2.187

WY 0.820 0.315 0.061 −0.092 0.111

33.886 12.244 1.949 −2.900 3.680

Table A3.

OLS estimates and t-values of individual states (Natural gas regression)

STATE yt−1 x1
t x1

t−1 x2
t x2

t−1

AK 0.055 0.766 0.511 0.287 0.326

0.204 0.806 0.467 0.475 0.510

AL 0.343 0.413 −0.690 −0.059 −0.085

1.763 0.835 −1.434 −0.406 −0.508

AR 0.160 0.116 −0.494 −0.150 −0.027

0.998 0.302 −1.490 −1.652 −0.292

AZ 0.274 −0.323 −0.760 −0.005 −0.325

1.857 −0.628 −1.291 −0.042 −2.177

CA −0.240 0.008 −2.087 0.147 −0.308

−1.442 0.012 −2.921 1.271 −2.457

CO 0.059 0.273 −0.955 −0.313 0.200

0.276 0.346 −1.506 −2.251 1.067

CT −0.069 0.390 0.255 −0.073 −0.164

−0.354 0.808 0.563 −0.730 −1.238

DE 0.166 0.593 −0.915 −0.320 0.036

0.765 0.976 −1.416 −2.475 0.253

FL 0.327 1.846 −2.607 −0.581 −0.053

2.145 2.182 −3.163 −2.348 −0.156

GA 0.469 0.757 −0.939 −0.446 0.387

1.782 1.142 −1.697 −1.604 1.152



A COMPARATIVE STUDY OF DIFFERENT SHRINKAGE ESTIMATORS 25

Table A3—Continued

IA −0.137 −0.466 −0.111 0.236 −0.414

−0.739 −1.960 −0.479 1.529 −2.569

ID 0.528 −2.722 2.039 −0.609 0.088

2.967 −2.695 1.914 −1.751 0.243

IL −0.088 1.165 −1.105 0.509 −0.597

−0.461 2.390 −2.382 2.413 −2.776

IN −0.044 −0.251 0.031 0.214 −0.314

−0.183 −0.730 0.103 1.303 −1.680

KS 0.611 0.030 −0.451 −0.004 −0.050

3.703 0.055 −0.999 −0.035 −0.394

KY 0.181 1.001 −1.694 0.081 −0.265

1.913 3.557 −5.614 0.872 −2.499

LA 0.662 0.509 −0.132 −0.030 −0.250

4.629 0.623 −0.130 −0.119 −0.972

MA 0.105 0.927 −0.344 0.388 −0.424

0.609 2.014 −0.760 2.622 −2.609

MD 0.068 1.637 −1.803 −0.238 0.119

0.315 2.968 −3.820 −2.685 1.149

ME 0.843 −1.291 1.167 −0.567 0.458

6.451 −1.818 1.633 −4.080 2.597

MI 0.214 −0.423 0.315 0.027 −0.012

0.868 −0.695 0.711 0.119 −0.045

MN −0.242 −0.191 0.063 0.048 −0.229

−1.034 −0.502 0.185 0.281 −1.142

MO 0.489 −0.253 −0.245 −0.054 −0.001

2.839 −0.596 −0.613 −0.449 −0.007

MS 0.430 0.158 −0.918 0.088 −0.047

2.117 0.178 −1.114 0.247 −0.129

MT 0.158 −0.057 −0.868 0.019 −0.344

0.799 −0.103 −1.833 0.102 −1.693

NE 0.488 0.991 −0.947 −0.517 0.387

3.150 1.849 −2.026 −2.386 1.597

NC 0.150 −0.242 0.224 0.113 −0.115

0.613 −0.972 1.092 0.431 −0.465

ND 0.100 −0.681 −0.308 0.178 −0.267

0.536 −2.094 −0.943 0.930 −1.297

NH 0.792 0.228 −0.090 −0.367 0.290

4.236 0.347 −0.141 −2.710 1.550

NJ 0.368 1.596 −1.160 −0.092 −0.090

1.639 1.893 −1.433 −0.481 −0.408

NM 0.298 −0.696 −0.124 −0.410 0.271

1.018 −0.439 −0.078 −1.244 0.965
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Table A3—Continued

NV −0.006 −0.510 0.799 0.122 −0.466

−0.027 −0.683 1.175 0.602 −1.901

NY 0.025 1.061 −0.717 0.013 −0.129

0.097 2.328 −1.627 0.116 −1.023

OH −0.442 −0.111 −0.934 −0.079 −0.188

−2.047 −0.265 −2.524 −0.667 −1.273

OK 0.410 0.537 −1.072 0.325 −0.330

2.292 0.950 −1.659 1.450 −1.772

OR 0.191 −2.307 2.449 −1.459 0.803

1.007 −1.594 1.568 −3.637 2.075

PA 0.404 0.699 −0.903 −0.145 0.084

1.588 1.191 −1.604 −0.960 0.497

RI −0.120 0.397 0.760 0.085 −0.144

−0.576 0.595 1.179 1.017 −1.546

SC 0.374 3.053 −3.064 −1.280 0.643

2.904 2.905 −3.047 −2.553 1.168

SD 0.246 −0.318 0.086 −0.088 −0.087

1.246 −1.085 0.292 −0.387 −0.353

TN 0.173 0.754 −0.725 −0.103 −0.139

0.595 1.092 −1.150 −0.482 −0.509

TX 0.521 0.431 −1.583 0.320 −0.109

3.545 0.417 −1.611 1.277 −0.400

UT 0.295 −0.098 −0.202 −0.507 0.380

1.107 −0.036 −0.092 −1.118 0.907

VA −0.036 2.433 −2.256 −0.197 −0.196

−0.169 3.600 −3.674 −1.592 −1.323

VT 0.665 0.793 −0.322 −0.082 −0.104

3.129 1.242 −0.448 −0.563 −0.832

WA −0.146 0.393 −0.995 −0.032 −0.505

−0.678 0.401 −0.943 −0.161 −2.018

WI −0.028 0.734 −0.381 0.189 −0.357

−0.088 1.103 −0.684 0.876 −1.346

WV 0.686 0.493 −0.841 −0.170 0.093

5.655 1.237 −2.096 −2.102 1.051

WY 0.457 −0.346 −1.336 0.365 −0.191

2.707 −0.442 −1.582 1.027 −0.689
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Table A4.

Shrinkage estimates and t-values of individual states (Natural gas regression)

STATE yt−1 x1
t x1

t−1 x2
t x2

t−1

AK 0.552 0.303 −0.298 −0.115 −0.027

14.606 12.310 −10.345 −3.110 −0.508

AL 0.535 0.317 −0.290 −0.118 −0.046

14.969 12.811 −10.651 −4.458 −1.549

AR 0.528 0.319 −0.285 −0.105 −0.033

14.594 13.028 −10.433 −4.031 −1.093

AZ 0.536 0.322 −0.298 −0.168 −0.141

14.551 13.069 −10.550 −5.659 −3.540

CA 0.524 0.322 −0.295 −0.152 −0.112

13.875 13.247 −10.710 −5.287 −3.035

CO 0.537 0.317 −0.286 −0.116 −0.024

14.441 13.086 −10.607 −4.243 −0.769

CT 0.614 0.319 −0.264 −0.088 0.056

19.792 13.185 −10.131 −3.096 1.715

DE 0.537 0.308 −0.299 −0.129 −0.050

14.628 12.501 −10.772 −4.455 −1.385

FL 0.571 0.294 −0.312 −0.134 −0.048

16.116 11.366 −10.424 −3.662 −0.890

GA 0.542 0.322 −0.278 −0.095 0.001

15.297 13.139 −10.294 −3.391 0.044

IA 0.538 0.318 −0.279 −0.103 −0.019

14.362 13.080 −10.187 −3.456 −0.486

ID 0.554 0.300 −0.308 −0.147 −0.080

14.973 12.005 −10.637 −4.239 −1.590

IL 0.531 0.328 −0.274 −0.095 −0.015

14.728 13.720 −10.379 −3.431 −0.472

IN 0.543 0.322 −0.274 −0.093 −0.000

14.922 13.270 −10.219 −3.345 −0.008

KS 0.539 0.330 −0.279 −0.121 −0.061

14.599 13.695 −10.344 −4.464 −1.886

KY 0.530 0.316 −0.298 −0.135 −0.079

14.588 12.909 −10.855 −5.007 −2.490

LA 0.539 0.330 −0.283 −0.143 −0.091

15.071 13.524 −10.359 −5.152 −2.735

MA 0.603 0.324 −0.263 −0.082 0.040

19.350 13.514 −10.053 −2.671 1.040

MD 0.543 0.316 −0.287 −0.094 0.009

15.300 12.975 −10.696 −3.358 0.269

ME 0.607 0.256 −0.342 −0.150 −0.044

19.497 9.704 −11.722 −5.213 −1.205
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Table A4—Continued

MI 0.557 0.328 −0.263 −0.077 0.031

15.498 13.633 −9.950 −2.746 0.968

MN 0.546 0.313 −0.283 −0.097 −0.002

14.953 12.869 −10.422 −3.269 −0.064

MO 0.539 0.325 −0.284 −0.119 −0.062

14.660 13.434 −10.504 −4.362 −1.952

MS 0.547 0.317 −0.287 −0.114 −0.034

15.140 12.731 −10.206 −3.763 −0.865

MT 0.535 0.311 −0.300 −0.137 −0.075

14.170 12.699 −10.704 −4.560 −1.867

NE 0.570 0.302 −0.293 −0.094 0.020

17.246 12.068 −10.676 −3.192 0.548

NC 0.563 0.299 −0.284 −0.092 0.012

15.710 12.121 −10.266 −2.890 0.285

ND 0.533 0.319 −0.282 −0.113 −0.043

14.188 13.156 −10.263 −3.822 −1.121

NH 0.622 0.304 −0.282 −0.103 0.038

19.920 12.301 −10.455 −3.229 0.919

NJ 0.592 0.329 −0.260 −0.082 0.048

17.896 13.715 −9.883 −2.651 1.213

NM 0.529 0.316 −0.290 −0.124 −0.044

14.106 12.888 −10.343 −4.009 −1.059

NV 0.533 0.315 −0.288 −0.118 −0.044

14.454 12.855 −10.421 −3.759 −1.042

NY 0.571 0.322 −0.272 −0.084 0.040

17.072 13.329 −10.390 −3.199 1.474

OH 0.524 0.325 −0.283 −0.117 −0.048

13.876 13.438 −10.512 −4.334 −1.524

OK 0.540 0.328 −0.277 −0.113 −0.045

14.852 13.512 −10.237 −4.028 −1.328

OR 0.549 0.297 −0.307 −0.125 −0.038

14.746 11.843 −10.598 −3.504 −0.728

PA 0.539 0.318 −0.285 −0.105 −0.011

15.045 13.100 −10.672 −3.961 −0.385

RI 0.611 0.325 −0.259 −0.075 0.060

18.820 13.374 −9.732 −2.382 1.481

SC 0.543 0.304 −0.304 −0.133 −0.060

14.928 12.064 −10.479 −3.752 −1.168

SD 0.541 0.302 −0.293 −0.111 −0.026

14.761 12.291 −10.465 −3.613 −0.628

TN 0.557 0.309 −0.291 −0.108 −0.007

15.822 12.418 −10.499 −3.811 −0.202
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Table A4—Continued

TX 0.540 0.327 −0.283 −0.125 −0.063

14.807 13.354 −10.225 −4.064 −1.586

UT 0.530 0.323 −0.283 −0.117 −0.039

13.918 13.252 −10.041 −3.370 −0.788

VA 0.545 0.306 −0.298 −0.113 −0.018

15.670 12.392 −10.920 −3.758 −0.488

VT 0.635 0.298 −0.292 −0.116 0.010

19.678 11.772 −10.303 −3.571 0.234

WA 0.538 0.294 −0.316 −0.148 −0.083

14.654 11.769 −11.152 −4.878 −2.046

WI 0.550 0.317 −0.279 −0.091 0.011

15.603 13.038 −10.495 −3.265 0.334

WV 0.543 0.322 −0.287 −0.134 −0.060

14.793 13.195 −10.539 −5.248 −2.044

WY 0.551 0.316 −0.285 −0.106 −0.019

14.591 12.966 −10.150 −3.240 −0.422

REFERENCES
Baltagi, B. H. and J. M. Griffin, 1984, Short and long run effects in pooled models.
International Economic Review 25, 631-645.

Choi, H. and H. Li, 2000, Economic development and growth convergence in China.
Journal of International Trade and Economic Development 9, 37-54.

Doel, I. T. van den and J. F. Kiviet, 1993, Neglected dynamics in panel data models:
Consequences and detection in finite samples, Working Paper, Tinbergen Institute,
University of Amsterdam.

Energy Information Administration, 1983, The State Energy Price and Expenditure
System.

Hu, W. and G. S. Maddala, 1994, A Monte Carlo study of alternative methods for
estimation and prediction from dynamic heterogeneous panel data, manuscript, Ohio
State University.

Maddala, G. S. 1991, To pool or not to pool: That is the question. Journal of Quan-
titative Economics 7, 255-264.

Maddala, G. S. and W. Hu, 1996, The pooling problem. In L. Matyas and P. Sevestre
(eds.), Econometrics of Panel Data, 307-322, (2nd ed. Kluwer, 1996).

Maddala, G. S., R. P. Trost, H. Li and F. Joutz, 1997, Estimation of short run and
long run elasticities of energy demand from panel data using shrinkage estimators.
Journal of Business and Economic Statistics 15, 90-100.

Magnus, J. and H. Neudecker, 1988, Matrix Differential Calculus with Applications
in Statistics and Econometrics. John Wiley & Sons.

Pesaran, M. H. and R. Smith, 1995, Estimating long-run relationships from dynamic
heterogeneous panels. Journal of Econometrics 68, 79-113.

Ridder, G. and T. J. Wansbeek, 1990, Dynamic models for panel data. In: van der
Ploeg (ed.), Advanced lectures in Quantitative Economics, Academic Press, London.



30 G. S. MADDALA, HONGYI LI, AND V. K. SRIVASTAVA

Robertson, D. and J. Symons, 1992, Some strange properties of panel data estimators.
Journal of Applied Econometrics 7, 175-189.

Rubin, D. B., 1980, Using empirical Bayes techniques in the law school validity stud-
ies. Journal of the American Statistical Association 75, 801-827.

Smith, A. F. M., 1973, A general Bayesian linear model. Journal of the Royal Statis-
tical Society B 35, 67-75.


