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1 Introduction

Dynamic general equilibrium theory has investigated the possibility of multiplicity of the equilib-

ria and indeterminacy of equilibrium paths. Multiplicity of the equilibria and indeterminacy can

explain why fundamentally similar economies exhibit the same per capita income but different

growth rates, or why economies with the same growth rate can exhibit different per capita levels

of income. This paper explores the implication on the economic equilibria of the assumption

that the agent chooses her depreciation rates endogenously by spending resources and time on

maintaining the stock of the physical capital. We study the complex dynamic behavior of the

neoclassical growth model with endogenous depreciation.

The standard neoclassical growth models, either the Solow model or the Ramsey model,

simply assumes that the depreciation rate is an exogenously positive constant. And the model

economy shows nice convergency properties of the unique steady state. As a matter of fact, their

models implicitly assume that the agent can’t change the depreciation rate through maintenance

and repairs, and the maintenance expenditure is not an independent variable in their models. In

other words, maintenance and repairs do not matter for the accumulation of the physical capital.

However, it is truth that the machine may be used longer if the agent spends some time and

resources to maintain and repair them constantly and regularly. That is to say, the depreciation

rate may be reduced endogenously through maintenance and repairs. And this paper wants to

formulate this idea and examines how the results of the standard models will be changed.

In the literature, many papers have considered the endogeneity of depreciation rates and

optimal maintenance of the physical capital. Empirically, Bitros (1976) obtains empirical re-

sults that maintenance expenditures are significantly related to gross investment and scrappage

as well as other cyclically sensitive variables and their trade-offs are substantial. Therefore,

he advises that maintenance expenditures be included among the independent variables in the

econometric models about investment. Theoretically, Auernheimer (1986) examines the robust-

ness of the conventional results concerning the relationship between the interest rate and the

price of capital, and the relationship among total capital services, employment and output with

variable depreciation rates. In his paper, the rate of depreciation of the capital stock is the

increasing and concave function of the intensity of use. Recently, Rioja (2003) examines the

maintenance of existing public infrastructure in developing countries, which endogenizes the

depreciation rate of the existing public infrastructure. The quantitative results of his paper

show that reallocating funds from new infrastructures to maintenance can have positive effects

on those countries’GDPs. And, by introducing optimal maintenance and a linear depreciation

function, Dangl and Wirl (2004) shows how to solve the Bellman equation analytically. In a
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paper, Gylfason & Zoega (2007) defines the depreciation rate as a decreasing function of the

durability of the capital stock and explain the differences in the quality of physical capital across

countries. And with the endogeneity of capital depreciation, Mukoyama (2008) finds that the

acceleration of investment-specific technological progress distorts the measurement of the aggre-

gate capital stock and accounts for a large portion of the observed productivity slowdown since

the 1970s. Furthermore, by assuming the depreciation rate as a strictly increasing function of

the rate of capital utilization and a strictly decreasing function of maintenance expenditure, Fu-

jisaki & Mino (2009) examines the long-run effects of inflation tax in a cash-in-advance economy.

However, the mechanism of endogeneity of these papers is different from ours. The basic law

of our endogenous mechanism is that the current depreciation rate is a deceasing and convex

function of the maintenance cost of the physical capital.

The literature on multiple equilibria and indeterminacy is large. Kurz (1968) puts forward

the possibility of multiple equilibria in an optimal growth model with wealth effects. The

channel that he reaches the multiplicity of the equilibria is putting the state variable (physical

capital) into the utility function. And, Boldrin and Montrucchio (1986) prove the indeterminacy

of the optimal capital accumulation paths for the small enough discount parameters. In a

model of industrialization, Matsuyama (1991) shows that multiple steady states exist because

of the increasing returns in the manufacturing sector. In another research, Evans, Honkapohja

& Domer (1998) constructs a rational expectation model, in which monopolistic competition

and complementarities between types of capital goods induce the expectational indeterminacy.

The models of many papers display indeterminate steady states because of aggregate increasing

returns generated by externalities or monopolistic competition or both, such as Murphy, Schleifer

and Vishny (1989), Spear (1991), Howitt and McAfee (1992), Kehoe, Levine and Romer (1992),

Benhabib and Farmers (1994), and many other researches. Benhabib, Meng and Nishimura

(2000) obtains indeterminacy under constant returns to scale in multisector economies.

The rest of this paper is organized as follows. Section 2 describes the neoclassical growth

model with a simple mechanism of endogenous depreciation, examines its complex dynamic

behavior, and solves for the steady states numerically. Section 3 discusses a different endogenous

mechanism of depreciation, studies the characteristics of a four-dimensional dynamic system and

presents the numerical solutions. Finally, the concluding remarks are presented in section 4.
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2 The Neoclassical Growth Model with Endogenous Deprecia-

tion

2.1 The Simple Model with Endogenous Depreciation

We consider a macroeconomic model with identical infinitely lived representative agent. The

representative agent chooses her consumption path ct, capital accumulation path kt and the

resources spending path on maintaining the machinery or physical capital st, to maximize the

discounted utility, namely,

max
{c,s,k}

∫ ∞
0

u (c) e−ρtdt, (1)

and subjects to the initial positive capital stock k (0) and the budget constraint (for simplicity,

suppose that the population growth rate is zero.)

k̇ = f (k)− c− s− δ (s) k, (2)

where ρ is the positive time preference rate. u (c) is the instantaneous utility function defined

on the private consumption c (t), and the utility function is strictly increasing, strictly concave,

namely uc > 0, ucc < 0. And f (k) is the standard neoclassical production function, satisfying

the following neoclassical properties, f ′ (k) > 0, f ′′ (k) < 0, lim
k→0

f ′(k) =∞ and lim
k→∞

f ′′ (k) = 0.

Furthermore, δ (s) is the depreciation rate, which is endogenously determined by the agent’s

spending on maintaining the physical capital s. Following Fujisaki & Mino (2009) with simplifi-

cation, we assume that δ (s) is a decreasing and convex function of s: δ′ (s) < 0, δ′′ (s) > 0, ∀s.
That is to say, the more the resources being spent on maintenance, the less the depreciation rate;

but the rate of decrease of the depreciation rate is decreasing. As a matter of fact, we suppose

implicitly the depreciation rate of period t depend upon the expenditure on maintenance of

period t only and the depreciation function is time invariant. As always, δ ∈ [0, 1] in a general

way.

The Hamiltonian for the above optimization problem can be written as follows:

H = u (c) + λ [f (k)− c− s− δ (s) k] ,

The first-order conditions for optimization are:

u′ (c) = λ, (3)

−1− δ′ (s) k = 0, (4)

λ̇ = −
[
f ′ (k)− δ (s)− ρ

]
λ, (5)

3



and the transversality condition

lim
t→∞

e−ρtλk = 0,

where λ is the co-state variable for physical capital k. Equation (3) is the familiar optimal

condition, which states that the marginal utility of consumption is equal to the marginal value

of capital stock. Equation (4) gives the optimal maintenance cost which is an increasing function

of the current capital stock. And equation (5) is the familiar Euler equation which determines

the intertemporal choice of consumption and maintainance.

2.2 Dynamic System

In this subsection, we present the dynamics of the system. From equation (3) and (5), we obtain

ċ = −u
′ (c)

u′′(c)

[
f ′ (k)− δ (s)− ρ

]
. (6)

Totally differentiating equation (4) yield

ds

dk
= − δ′ (s)

kδ′′ (s)
, (7)

which is positive because of the properties of the depreciation function. Hence, s is an increasing

function of k, i.e., s = s (k) and s′ (k) > 0. However, we cannot obtain the sign of the second

derivative of this function because s′′ (k) relies on the third derivative of the depreciation func-

tion. In fact, this is the reason why we can obtain very complex dynamics in this model, about

which we will talk in the subsequent sections.

Substituting s = s (k) into equation (6) and (2), we obtain the following dynamic system in

the (c, k) space and this system completely characterizes our model economy:

ċ = − u
′ (c)

u′′ (c)

[
f ′ (k)− δ (s (k))− ρ

]
, (8)

k̇ = f (k)− c− s (k)− δ (s (k)) k. (9)

2.3 Steady State

Let ċ = k̇ = 0. The steady-state levels of the economy, (c∗, k∗) can be characterized by

f ′ (k∗) = δ (s (k∗)) + ρ, (10)

f (k∗) = c∗ + s (k∗) + δ (s (k∗)) k∗. (11)
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At first, we examine the existence of the equilibria determined by equation (10). Then we

study the properties of this algebraic equation. Define φ (k) = f ′ (k), ψ (k) = δ (s (k)) +ρ. Then

the neoclassical production function gives f ′ (k) > 0, f ′′ (k) < 0 and Inada conditions

lim
k→∞

f ′ (k) = 0, lim
k→0

f ′ (k) =∞.

Then, we can have the following properties of φ (k):

lim
k→0

φ (k) = lim
k→0

f ′ (k) =∞,

lim
k→∞

φ (k) = lim
k→∞

f ′ (k) = 0,

φ′ (k) = f ′′ (k) < 0.

However, we cannot obtain the exact sign of the second derivative of φ (k), because it is de-

termined by the third derivative of the production function. Then in the coordinate space of

(k, φ (k)), we get a declining curve without any knowledge about its curvature. Meanwhile,

from the bounded, decreasing and convex depreciation function and (7), we have the following

properties of ψ (k):

ψ′ (k) = δ′ (s (k)) s′ (k) < 0, ψ (k) ∈ [ρ, 1 + ρ] .

Similarly, we do not know the exact sign of ψ′′ (k) without any assumption about the third

derivative of the depreciation function. Hence, we just get a declining curve in the coordinate

space of (k, ψ (k)) without any information about its curvature.

Based on the aforementioned discussions, we cannot obtain the exact results about the

existence of the steady state. But, we can conjecture all sorts of possibilities: one steady state,

multiple steady states or a continuum of steady state. And we will present numerical solutions

of these possibilities in section 2.5.

2.4 Stability of the Economic System

It is hard to get the explicit result about the global stability of the dynamic system with the

initial capital stock and the transversality condition. However, we can draw conclusions on the

local stability of the steady states. Based on the analysis of section (2.3) and the subsequent

sections about numerical solutions, we know that the steady state may not exist. Naturally, we

assume that there exists at least one steady state in this subsection. Then, linearizing system

around the steady state (c∗, k∗), leads to(
ċ

k̇

)
=

(
0 −u′ (c∗) [f ′′ (k∗)− δ′ (s (k∗)) s′ (k∗)] /u′′ (c∗)

−1 f ′ (k∗)− s′ (k∗)− δ′ (s (k∗)) s′ (k∗) k∗ − δ (s (k∗))

)(
c− c∗

k − k∗

)
. (12)
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Denote J the coeffi cient matrix of the above system. The determinant and trace of the

Jacobian matrix are

det (J) = −u′ (c∗)
[
f ′′ (k∗)− δ′ (s (k∗)) s′ (k∗)

]
/u′′ (c∗) ,

and

trace (J) = f ′ (k∗)− s′ (k∗)− δ′ (s (k∗)) s′ (k∗) k∗ − δ (s (k∗)) ,

respectively.

To derive the stability of the system, the characteristic equation of the system is

θ2 +Bθ + C = 0,

where

B = − (θ1 + θ2) = − trace (J) , C = θ1θ2 = det (J) .

The characteristic roots of the system are

θ1,2 =
1

2

(
−B ±

√
B2 − 4C

)
.

Note that there is only one predetermined variable, k, in the system. Consequently, if the

Jacobian matrix has two eigenvalues which have negative real parts, the linearized system is

locally indeterminate. And if there is exactly one eigenvalue with negative real part, the system

is saddle-point stable. Finally, if there is no eigenvalue with negative real part, the system is

unstable. So we obtain the proposition.

Proposition Assume the steady states exist.

1), If B2− 4C > 0 and det (J) = θ1θ2 < 0, then one eigenvalue is positive, and the other one

is negative. Hence, the system is saddle-point stable.

2), If B2 − 4C ≥ 0, trace (J) = − (θ1 + θ2) > 0, and det (J) = θ1θ2 < 0, two eigenvalues

have positive real roots; or if B2 − 4C < 0 and trace (J) = − (θ1 + θ2) > 0, two eigenvalues are

conjugate complex roots with positive real parts. Hence, the system is totally unstable.

3), if B2 − 4C ≥ 0, trace (J) = − (θ1 + θ2) > 0, det (J) = θ1θ2 > 0 hold, two eigenvalues

are negative real numbers; if B2 − 4C < 0 and trace (J) = − (θ1 + θ2) > 0, two eigenvalues are

conjugate complex roots with negative real parts. Hence, the system is stable. Furthermore,

the steady state is indeterminate, and in fact, we have a continuum of equilibria.

4), If B2 − 4C < 0 and trace (J) = − (θ1 + θ2) = 0 hold, two eigenvalues are conjugate

complex roots with zero real part, then the system shows oscillating dynamics. In this case, the

system neither converges nor diverges, and the trajectories are ellipses around the steady state.
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2.5 Numerical Solutions

2.5.1 Example 1: Uniqueness of the Equilibrium

Case 1: The Saddle-point Stability of a Unique Equilibrium We take the utility

function, the production function, the depreciation function, and the time preference rate as

follows:

u (c) = log c, δ (s) =
1

1 + s
, f (k) = 2.5k0.5, ρ = 0.02. (13)

After calculations, we have s (k) = k0.5−1, s′ (k) = 0.5k−0.5, δ (s (k)) = k−0.5. Then, we can

find that there exists a unique equilibrium:

k∗ = 156.25, c∗ = 7.25.

And the associated optimal maintenance expenditure and optimal depreciation rate are:

s∗ = 11.5, δ∗ = 0.08.

The eigenvalues of the Jacobian matrix in the case are −0.0554 and 0.0754. Therefore, the

equilibrium is saddle-point stable. ( Insert Figure 1.1 about here)

Case 2: Instability of a Unique Equilibrium If taking those functions as follows:

f (k) = 5k0.5, u (c) = log c, δ (s) =
1

1 + 2s
, ρ = 0.05, (14)

then, we obtain, k∗ = 1285.7864, c∗ = 129.0786, s∗ = 7.5336, and δ∗ = 0.0622. The correspond-

ing eigenvalues of the Jacobian are 0.0300± 557.84i. Thus, the steady state is unstable. (Insert

Figure 1.2 about here)

2.5.2 Example 2: Multiple Equilibria and Local Indeterminacy

Case 1: Two Steady States and Local Indeterminacy The first one takes parameter

values: A = 5, α = 0.3, ρ = 0.08, and with the same functional forms as (14). We can get two

steady states. One is k∗1 = 229.7970, c∗1 = 4.6108, s∗1 = 10.2191, and δ∗1 = 0.0466. And the

corresponding eigenvalues are −0.0066 ± 43.4891i, which implies that we have two eigenvalues

with negative parts. Hence, we conclude that this steady state is locally indeterminate. That is

to say, there exists a continuum equilibrium locally. The other is k∗2 = 9.5761, c∗2 = 5.9712, s∗2 =

1.6882, and δ∗2 = 0.2285. And the corresponding eigenvalues are 0.0400 ± 10.1063i. Therefore,

the steady state is unstable. (Insert Figure 2.3 about here)
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The second one takes parameter values: A = 4, α = 0.36, ρ = 2, and with the same functional

forms as (14). Then, one steady state is k∗1 = 1.2670, c∗1 = 3.1746, s∗1 = 0.2507, and δ∗1 = 0.6661.

The corresponding eigenvalues are: 0.3339 ± 2.4968i. The other is k∗2 = 0.2641, c∗2 = 2.2506,

s∗2 = −0.1366, and c∗2 = 2.2506. And the corresponding eigenvalues are: 1.0000 ± 2.3996i.

Therefore, both of these two equilibria are locally unstable. (Insert Figure 2.4 about here)

Case 2: Four Steady States and Local Indeterminacy The first example takes para-

meter values A = 2, α = 0.3, ρ = 0.05, and with the same functional form as (14). We obtain

four steady state (k∗, c∗, s∗, δ∗):

(321.2989, 3.4021, 12.1748, 0.0394), (84.7063, 6.4226, 0.0079, 0.0768),

(0.5802, 3.6694, 0.0386, 0.9283), (0.3576, 3.3270,−0.0772, 1.1825).

The eigenvalues of the Jacobian matrix associated with the above four equilibria are,

−0.0144± 27.9367i,−0.0250± 19.7090i,−0.0250± 2.1107i, 0.0250± 2.5198i.

Therefore, we can draw the conclusion that the former three steady states are locally indeter-

minate, whereas the fourth is unstable.

The second one takes the parameter value A = 3, α = 0.35, ρ = 0.02, and with the same

functional form with (13). We obtain four steady states:

(1.6464, 2.0057, 0.2831, 0.7794), (1.1983, 2.0068, 0.0947, 0.9135),

(980.8246,−28.2030, 30.3181, 0.0319), (4225.8150,−73.2696, 64.0063, 0.0154).

The eigenvalues of the Jacobian matrix associated with above four equilibria are,

−1.0474, 1.0274;−1.3246, 1.3446;−0.0100± 0.0241i;−0.0054± 0.0049i.

Hence, we know that the former two equilibria are saddle-point stability and the later two

equilibria are locally indeterminate.

2.5.3 Example 3: One Steady State and Neutral Oscillating Dynamics

Let

u (c) = log c, f (k) = 2k0.35, δ (s) = e−s, and ρ = 0. (15)

The corresponding steady state is

(k∗, c∗, s∗, δ∗) = (2.7706, 0.8380, 1.0191, 0.3609),

8



and the eigenvalues of the Jacobian matrix are ±0.1955i.

We know that if we assume zero time preference rate and nonzero depreciation rate or

population growth rate in the standard neoclassical growth model, we can obtain only one steady

state (excluding the degenerate zero steady state) and the system may converge or diverge to the

steady state because the transversality condition may not help us find the optimal consumption

at this time. But we can’t obtain oscillating dynamics in the standard model. In our endogenous

depreciation model, the oscillating dynamics emerge. At this time, the system neither converges

nor diverges and the trajectories are ellipses around the steady state.

2.5.4 Example 4: No Steady State

Finally, we give an example in which there exists no steady state. If we assume A = 0.5, ρ = 0.02

and others are the same with (15), we can’t get a real root in the real number space. That is to

say, there does not exist a steady state.

3 Extension of the Benchmark Model

3.1 The Model with More General Mechanism of Endogeneity

In this section, we adopt a different endogenous mechanism of depreciation, certainly, more

general. In the above simple model, we assume that the depreciation rate δt of time t depends

on the maintenance cost st of time t only, i.e., δt = δ (st). That is to say, there is no accumulation

of the depreciation, or in other words, the current depreciation rate is independent of all of the

past expenditures. But in reality, for example, a car with regular and aborative maintenance

must be used much longer than the one with inattentive care. Therefore, we assume that the

current depreciation rate depends on all of the past cares, mathematically,

∆t =

∫ t

v=0
τ (v, t) δ (sv) dv. (16)

∆t is the depreciation rate of time t. sv is the maintenance expenditure of time v. δ (sv) = δv

is the depreciation function of time v, and it is a decreasing, concave function of sv. We

assume δv ∈ [0, 1] as before. In order that the integral in (16) converges, we assume that

τ (v, t) = aeb(v−t), and
∫ t
v=0 τ (v, t) dv = 1, where a, b are undetermined coeffi cients. After simple

calculations, we can obtain

a ≡ b

1− e−bt .
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Furthermore, we have

∆t =

∫ t

v=0

b

1− e−bt e
b(v−t)δ (sv) dv.

Taking derivative about t, we can obtain our dynamic accumulation equation of the endogenous

depreciation rate,

∆̇t = −a [∆t − δ (st)] .

The hamiltonian of the representative agent is written as

H = u (c) + λ [f (k)− c− s−∆k]− µa [∆− δ (s)] ,

where λ is the positive co-state variable with respect to the physical capital k, and µ is the

negative co-state variable with respect to the depreciation rate ∆. Given the initial capital

stock k (0) = k0 and the initial depreciation rate ∆0 = 0, we can easily obtain the first-order

conditions:

λ = u′ (c) , (17)

λ = aµδ′ (s) , (18)

λ̇ = −
[
f ′ (k)−∆− ρ

]
λ, (19)

u̇ = −
[
aδ′ (s) k + a+ ρ

]
µ, (20)

k̇ = f (k)− c− s−∆k, (21)

∆̇ = −a [∆− δ (s)] , (22)

and the TVC: limt→∞ e−ρtλk = limt→∞ e−ρtµ∆ = 0.

Equation (17) and (18) are the familiar intratemporal optimality conditions which mean that

the marginal utility of consumption is equal to the marginal value of physical capital and the

marginal value of expenditure on the decrease of the depreciation rate. Equation (19) and (20)

are the Euler equations depicting the inter-temporal optimum. Equation (21) and (22) are the

dynamic accumulation functions of the economy.

3.2 The Dynamic System

From (17) and (19), we obtain:

ċ = − u
′ (c)

u′′ (c)

[
f ′ (k)−∆− ρ

]
. (23)
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Taking derivative on equation (13b) totally, we have?:

ds

dc
=

u′′ (c)

aδ′′ (s)µ
> 0,

ds

dµ
= − δ′ (s)

δ′′ (s)µ
< 0.

Hence, we can represent s as a function of c, µ, i.e., s = s (c, µ). Substituting it into (20),

(21) and (22), we obtain the whole dynamics of the economic system:

ċ = − u
′ (c)

u′′ (c)

[
f ′ (k)−∆− ρ

]
, (24a)

µ̇ = −µ
[
aδ′ (s (c, µ)) k + a+ ρ

]
, (24b)

k̇ = f (k)− c− s (c, µ)−∆k, (24c)

∆̇ = −a [∆− δ (s (c, µ))] . (24d)

3.3 The Steady State

Imposing the stability condition ċ = µ̇ = k̇ = ∆̇ = 0, we can obtain the steady state (c∗, µ∗, k∗,∆∗)

of the economy described by the following equations:

f ′ (k∗) = ∆∗ + ρ, (25)

ak∗δ′ (s (c∗, µ∗)) + a+ ρ = 0, (26)

f (k∗) = c∗ + s (c∗, µ∗) + ∆∗k∗, (27)

∆∗ = δ (s (c∗, µ∗)) . (28)

Substituting (28) into (25) and (27), we get a group of equations:

f ′ (k∗) = δ (s (c∗, µ∗)) + ρ, (29)

ak∗δ′ (s (c∗, µ∗)) + a+ ρ = 0, (30)

f (k∗) = c∗ + s (c∗, µ∗) + δ (s (c∗, µ∗)) k∗. (31)

Totally differentiating (30), we get:

dµ∗

dk∗
=

−δ′ (s (c∗, µ∗))

k∗δ′′ (s (c∗, µ∗)) sµ (c∗, µ∗)
< 0,

dµ∗

dc∗
= − sc (c∗, µ∗)

sµ (c∗, µ∗)
> 0.
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Hence, we describe µ∗ as a function of c∗ and k∗, i.e., µ∗ = µ (c∗, k∗). Moreover, substituting it

into (29) and (31) leads to:

f ′(k∗) = δ(s(c∗, µ (c∗, k∗))) + ρ, (32)

f(k∗) = c∗ + s (c∗, µ (c∗, k∗)) + δ (s (c∗, µ (c∗, k∗))) k∗, (33)

which are the same as (12) essentially.

Next, we consider the existence of the equilibria. Totally differentiating (32) and (33), we

obtain:

dc∗

dk∗
=

− f ′′(k∗)− δ′ (s (c∗, µ (c∗, k∗))) sµ (c∗, µ (c∗, k∗))µk (c∗, k∗)

δ′ (s (c∗, µ (c∗, k∗))) [sc (c∗, µ (c∗, k∗)) + sµ (c∗, µ (c∗, k∗))µc (c∗, k∗)]
,

dc∗

dk∗
=

−f ′(k∗) + δ (s (c∗, µ (c∗, k∗))) + sc (c∗, µ (c∗, k∗)) [µk (c∗, k∗) + k∗sµ (c∗, µ (c∗, k∗)) δ′ (s (c∗, µ (c∗, k∗)))]

1 + sc (c∗, µ (c∗, k∗)) + sµ (c∗, µ (c∗, k∗))µc (c∗, k∗) + δ′ (s (c∗, µ (c∗, k∗))) k∗ [1 + sµ (c∗, µ (c∗, k∗))µc (c∗, k∗)]
,

whose signs cannot be determined based on the present assumptions. So we can say nothing

about the existence of the equilibria with respect to these general functional forms. In section

3.5, we can get some interesting numerical solutions with special specifications of the utility

function, production function and depreciation function.

3.4 The Stability of the Extended Model

Similar to the simple model, we assume the equilibrium exists at first. Linearizing system (24)

around the steady state leads to:
ċ

µ̇

k̇

∆̇

 =


0 0 − u′(c∗)

u”(c∗)f
′′(k∗) u′(c∗)

u′′(c∗)

aµ∗k∗δ′′ (s∗) s∗c aµ∗k∗δ′′ (s∗) s∗µ aµ∗δ′ (s∗) 0

−1− s∗c −s∗µ ρ −k∗

aδ′ (s∗) s∗c aδ′ (s∗) s∗µ 0 −a




c− c∗

µ− µ∗

k − k∗

∆−∆∗

 .

We know that there are two state variables in this system. Now, applying the theorems for-

mulated in Dockner (1985, 1991), we can obtain the stability proposition of this four dimensional

dynamic system through calculations of the Jacobian matrix of the correponding linearized sys-

tem. However, we will leave out this calculation because it is the same as the simple model, and

because the numerical results of the following subsection are more convicing.
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3.5 Numerical Solutions

3.5.1 Example 1: An Explicit Solution with a Unique Steady state

We assume that f (k) = Akα, δ (s) = e−s, and u (c) = log c. With the same calculations as the

aforementioned general case, we can obtain the unique steady state of the economy:

k∗ =

(
a+ ρ

Aαa

)1/α
,

c∗ = Ak∗α − log

(
ak∗

a+ ρ

)
− a+ ρ

a
,

with the related equilibrium maintenance expenditure: s∗ = log (ak∗/a+ ρ) and the equilibrium

depreciation rate: ∆∗ = a+ρ/ak∗. However, the local stability of this unique equilibrium cannot

be determined and it depends on specific parameter values.

Let A = 2, ρ = 0.02, α = 0.4, and a = 10, the steady state of the endogenous variables are

c∗ = 0.9421, k∗ = 1.7557, ∆∗ = 0.5707, and s∗ = 0.5609. The eigenvalues of the Jacobian matrix

are 14.6445, −7.3082± 6.9747i, and 0.0118. Thus, the steady state is saddle-point stable.

If we change the value of ρ from 0.02 into 0 without any change of the other variables, we can

obtain the steady state of the endogenous variables: c∗ = 0.9421, k∗ = 1.7469, ∆∗ = 0.5724, and

s∗ = 0.5579. The eigenvalues of the Jacob matrix are 14.5886, −7.2901± 6.9086i, and −0.0084.

Hence, the equilibrium is locally indeterminate.

3.5.2 Example 2: A Case with Multiple Equilibria

Let f (k) = Akα, u (c) = log c, and δ (s) = 1
1+s . If we take A = 2.5, α = 0.5, ρ = 0.04,

and a = 10, there exits a unique steady state: k∗ = 38.4406, c∗ = 9.9911, ∆∗ = 0.1615, and

s∗ = 5.1939. And the eigenvalues of the Jacobian matrix are 10.1217, −10.0817, 0.0946, and

−0.0546. Hence the unique steady state is saddle-point stable.

If we take A = 10, α = 0.3, ρ = 0.04, and a = 10, we obtain two steady states. One is

(c∗1, k
∗
1,∆

∗
1, s
∗
1) = (61.5861, 35.4540, 0.1276, 6.8398),

and the corresponding eigenvalues of the Jacobian matrix are 10.1057, −0.1558, 0.1958, and

−10.0637. Thus, this steady state is locally saddle-point stable.

The other steady state is

(c∗2, k
∗
2,∆

∗
2, s
∗
2) = (1754.4188, 95.1915, 0.0239, 40.8440),

and the corresponding eigenvalues of the Jacobian matrix are 10.0520, −10.0120, 0.0010, and

0.0390. Therefore, this steady state is unstable.
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Letting A = 3, α = 0.35, ρ = 0.02, and a = 10, we obtain four steady states,

(c∗1, k
∗
1,∆

∗
1, s
∗
1) = (4.5652, 1.6341, 0.7831, 0.2770),

(c∗2, k
∗
2,∆

∗
2, s
∗
2) = (56.9091, 4231.8940, 0.7831, 0.2770),

(c∗3, k
∗
3,∆

∗
3, s
∗
3) = (4.1915, 1.1911, 0.9172, 0.0903),

(c∗4, k
∗
4,∆

∗
4, s
∗
4) = (34.5771, 984.6398, 0.0319, 30.3954).

and their corresponding eigenvalues of the Jacobian matrix are:

10.4667, 0.5272,−0.5072,−10.4467,

11.0789, 1.7348,−1.7148,−11.0589,

10.5607, 0.7007,−0.6807,−10.5407,

10.0359,−10.0159, 0.0100± 0.0137i,

which imply that the first three steady states are saddle-point stable and the last one is unstable.

Now supposing A = 2, ρ = 0.04, α = 0.35, and a = 10, we obtain four unstable steady states:

(c∗1, k
∗
1,∆

∗
1, s
∗
1) = (15.9923, 311.6698, 0.0567, 16.6365),

(c∗2, k
∗
2,∆

∗
2, s
∗
2) = (10.1675, 15.875, 0.2512, 2.9804),

(c∗3, k
∗
3,∆

∗
3, s
∗
3) = (4.4004, 4.5234, 0.4707, 1.1247),

(c∗4, k
∗
4,∆

∗
4, s
∗
4) = (23.3945, 978.4100, 0.0320, 0.0320),

with the corresponding eigenvalues of the Jacobian matrix as follows:

10.0683,−10.0283, 0.0200± 0.0221i,

10.1675,−10.1275, 0.0200± 0.1374i,

10.2851,−10.2451, 0.0200± 0.2433i,

10.0560,−10.0160, 0.0081, 0.0319.

If we take A = 0.5, α = 0.35, ρ = 0.02, and a = 10, we cannot find real roots of equilibrium

capital stock. That is to say, no steady state exists.

4 Concluding Remarks

This paper explores the implications of the hypothesis that the depreciation rate of the physical

capital of the economy is determined by the efforts of maintenance and repairs of the agent. By
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introducing two different endogenous mechanisms, we find that the convergence property of the

unique steady state in the standard neoclassical growth model cannot be guaranteed. In fact,

complex dynamics emerge, with multiple equilibria and indeterminacy.

In existing studies, many papers have derived multiple equilibria and indeterminacy by

making strong assumptions about the utility function, the market structure, and the production

technology. As we have seen, some papers put the state variable into the utility function; or

introduce market imperfections such as monopolistic competition and externalities; or make

strong assumptions on the production technology such as increasing return to scale. Different

from the literature, we attach importance to the depreciate rate which is regarded as a constant

in the standard neoclassical model and endogenize it in the standard model. Surprisingly, once

the depreciation rate is endogenized, the uniqueness and convergence of the equilibrium do not

guarantee, and multiple equilibria and indeterminacy emerge. Furthermore, this endogeneity of

depreciation rate is supported by many empirical studies and accounting studies. Therefore, we

obtain a new channel of reaching multiple equilibria and indeterminacy.

As another study by us (Luo, Wang & Zou, 2010), we introduce the endogenous depreciation

into the theory of firm. With endogenous depreciation rate in the q-theory of investment, we find

out that the standard equilibrium result of the q-theory should be revised. In our future study,

we will study the effects of macroeconomic policies or different developmental strategies within

this new framework. And we think that the new research will help improve our knowledgement

on the theory of growth, investment and development.
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