
ANNALS OF ECONOMICS AND FINANCE 11-2, 313–335 (2010)

Irreversible Investment of the Risk- and Uncertainty-averse DM

under k-Ignorance: The Role of BSDE *

Zengwu Wang

Institute of Finance & Banking, Chinese Academy of Social Sciences, Beijing
100732, P. R. China

E-mail: zwwang@amss.ac.cn, wzwifb@cass.org.cn

In this paper, the approach of BSDE will be employed to study the ir-
reversible investment problem under k-ignorance when the DM is risk- and
uncertainty-averse. For the case of logarithmic utility, we work out the ex-
plicit solutions of the value of the utilized patent, the value of the unutilized
patent, and the value of the reservation profit. Furthermore, in view of nu-
merical method, the effects of the risk and the uncertainty on the above three
parameters are analyzed. All the comparative static results are consistent with
our intuition.
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1. INTRODUCTION

Usually, the investment decision of any firm typically involves three fea-
tures. The first one is that the market conditions are uncertain in the
future. Second, the cost of the investment is sunk and thus the investment
is irreversible. Third, investment opportunity does not vanish at once,
therefore when to invest becomes a critical decision. Recently, this kind
of irreversible investment problem have attracted considerable attentions,
See McDonald and Siegel (1986) and Dixit and Pindyck (1994). They used
the approach of financial option pricing theory, which offered an elegant
way to obtain the optimal investment strategy. In these traditional re-
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search papers, they also assumed that the uncertainty environment could
be characterized by a certain probability measure over states of nature,
which implied that decision maker of a firm (DM in short) was perfectly
certain that market condition in the future was governed by this particular
probability measure. However, this assumption may not be reasonable: the
DM may not be so sure about future uncertainty. It may think other prob-
ability measures are also likely and have no idea of relative “plausibility” of
these measures. A natural question is: How to describe this phenomena?

“Knightian uncertainty” or “ambiguity” in alternatives, introduced by
Knight (1921) and Keynes (1921, 1936), will perfectly characterize the
above uncertainty phenomena. In particular, uncertainty that is reducible
to a single probability measure with known parameters is referred to as
“risk”. Epstein (1999) gave the rigorous definitions of risk and uncertainty,
he also stated the definition of uncertainty aversion and some interesting
results. In reality, the DM cannot completely assess the coming uncertainty,
so it may face Knightian uncertainty in evaluating its investment. As a
rule, Knightian uncertainty is often characterized by a set of probability
measures, which also satisfy some additional restrictions.

Nishimura and Ozaki (2007), Schröder (2006) and Miao and Wang (2009)
involved the Knightian uncertainty into the irreversible investment prob-
lem, the first two papers considered the Knightian uncertainty of “k-ignorance”
in continuous time, the third paper considered the case of multiple-priors
in discrete time. “k-ignorance”, introduced by Chen and Epstein (2002),
means that the set of probability measures deviate from P is not large in
the sense that the element in it is absolutely continuous to the original
probability measure P and the corresponding density generator’s move is
confined in a range, [−k, k], where k > 0 can be described as a degree of
this Knightian uncertainty. To highlight the effect of the uncertainty, they
all assume that the DM is risk neutral, i.e., the utility function is linear.
Some appealing theoretical and comparative static results are obtained.

However, in reality, the DM may evaluate the profit by a utility function,
that is, the DM is risk averse. This means that it is essential to include some
individual risk aversing parameters into the decision model for capturing
the DM’s attitude towards the risk he faces. It is widely known that the
concavity of the utility function implies the risk-aversion of the decision
maker. Thus, in this paper, we assume that the DM evaluates the profit of
irreversible investment by a concave utility function. That is, we study the
problem of the irreversible investment of risk- and uncertainty-averse DM
under k-ignorance. When the DM evaluates his/her position, he/she will
use a probability corresponding to the “worst” scenario, which means that
the DM is uncertainty aversion. For this stream of literatures, the reader
may refer to Gilboa and Schmeidler (1989), Gilboa (1987) and so on.
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BSDE, introduced by Pardox and Peng (1990), plays an important role
in many fields, such as stochastic control, mathematical finance, economics
and so on. Via the solution of BSDE, Peng (1997) introduced the notions of
g-expectation and conditional g-expectation, where they also proved that
the conditional g-expectation preserved all properties of the classical con-
ditional expectation except the linearity. Some applications of conditional
g-expectation in economics and mathematical finance can be founded in
Chen and Epstein (2002), El Karoui et al. (1997), Chen and Kulperger
(2006) and references there in.

Under the framework of k-ignorance, Chen and Epstein (2002) proved
that the infimum of the conditional expectation could be represented as
a conditional g-expectation, which implied that it could be represented as
the solution of BSDE. Chen and Kulperger (2006) defined this as the mar-
tingale representation theorem of the minimum conditional expectation.
With the help of some results of BSDE, Chen and Kulperger (2006) also
argued that the infimum of the conditional expectation can be obtained
under k-ignorance for some special random variables. Motivated by this,
in this paper we will use the results of BSDE to study the irreversible in-
vestment problem of risk- and uncertainty-averse DM under k-ignorance.
The use of BSDE has the following three advantages: (i) The Min expec-
tation induced by g-expectation is dynamic consistent; (ii) the closed form
solutions of Maxmin expected utility can be easily obtained for geometric
Brownian motion profit process; (iii) last but not least, we may consider
the general profit flow process.

This paper proceeds as follows. In section 2, we list some preliminary
results on BSDE and conditional g-expectation. The problem formulation
and the general results are presented in Section 3. When the utility function
is logarithmic and the profit flow follows geometric Brownian motion, we
get the explicit solutions of the value of the utilized value, the value of the
unutilized value and the value of the reservation profit value. These results
are stated in Section 4. Some comparative results are also involved in this
section. Section 5 is a brief conclusion. All the derivation and proofs are
relegated in the Appendix.

2. BSDE AND G-EXPECTATION

Let (Ω,F , (Ft)t≥0, P) be a filtrated probability space. Suppose that
(Ft)t≥0 is the natural σ-filtration generated by the standard one-dimensional
Brownian motion (Bt)t≥0, that is,

Ft = σ{Bs, 0 ≤ s ≤ t}.
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Let T > 0,FT = F and g = g(t, y, z) : R × R × [0, T ] → R be a function
satisfying

(H1) ∀(y, z) ∈ R×R, g(t, y, z) is continuous in t and
∫ T

0
g2(t, 0, 0)dt < ∞;

(H2) g is uniformly Lipschtiz continuous in (y, z), that is, there exists a
constant c > 0 such that ∀y1, y2, z1, z2 ∈ R,

|g(t, y1, z1)− g(t, y2, z2)| ≤ c(|y1 − y2|+ |z1 − z2|);

(H3) g(t, y, 0) = 0, ∀(t, y) ∈ R× [0, T ].
At the beginning of this section, we will list the existence and uniqueness

theorem of the solution of BSDE and some properties of conditional g-
expectation.

Let M(0, T, R) be the set of all square integrable R-valued, Ft-adapted
process {νt} with

E
∫ T

0

|νt|2dt < ∞.

For each t ∈ [0, T ], let L2(Ω,Ft, P) denote the set of all Ft-measurable
random variables in M(0, T, R), Pardoux and Peng (1990) considered the
following BSDE:

yt = ξ +
∫ T

t

g(s, ys, zs)ds−
∫ T

t

zsdBs, 0 ≤ t ≤ T, (1)

and showed the following result:

Lemma 1. Suppose that g satisfies (H1) − (H2) and ξ ∈ L2(Ω,F , P),
then BSDE 1 has a unique solution (y, z) ∈M(0, T, R)×M(0, T, R).

Via the solution of BSDE, Peng (1997) introduced the concept of g-
expectation.

Definition 2.1. Suppose that g satisfies (H1) − (H3). Given ξ ∈
L2(Ω,F , P), let (y, z) be the solution of BSDE 1. We denote g-expectation
of ξ by Ecg[ξ] and define it as

Ecg[ξ] := y0.

From the definition of g-expectation, Peng (1997) also introduced the
concept of conditional g-expectation:
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Lemma 2. For any ξ ∈ L2(Ω,F , P), there exists a unique η ∈ L2(Ω,F , P)
such that

Ecg[IAξ] = Ecg[IAη], ∀A ∈ Ft.

We call η the conditional g-expectation of ξ and write η as Ecg[ξ|Ft]. Of
course, such conditional expectations can be defined only for sub σ-algebra
which appears in the filtration {Ft}. Furthermore, Ecg[ξ|Ft] is the value of
the solution {yt} of BSDE 1 at time t. That is,

Ecg[ξ|Ft] = yt.

The conditional g-expectation preserves many of the properties of clas-
sical conditional mathematical expectation. However, it doesn’t preserve
linearity. See, for example, Peng (1997) for details.

Lemma 3.

(i) For any constant c, Ecg[c|Ft] = c;
(ii) If ξ is Ft-measurable, then Ecg[ξ|Ft] = ξ;
(iii) For any t, s ∈ [0, T ],

Ecg[Ecg[ξ|Ft]|Fs] = Ecg[ξ|Ft∧s];

(iv) If ξ1 ≥ ξ2, then Ecg[ξ1|Ft] ≥ Ecg[ξ2|Ft].

Remark 2.1.
1. g-expectation and conditional g-expectation depend on the choice of

the function g, if g is nonlinear, then conditional g-expectation is usually
also nonlinear.

2. If g ≡ 0, setting conditional expectation E[·|Ft] on both sides of BSDE
1 yields yt = Ecg[ξ|Ft] = E[ξ|Ft], y0 = Ecg[ξ] = E[ξ]. This implies another
explanation for mathematical expectation: Within the particular frame-
work of a Brownian filtration, conditional mathematical expectations with
respect to {Ft}t≥0 are the solution of a simple BSDE and mathematical
expectation is the value of this solution at time t = 0.

In the discussion that follows, we are in position to describe k-ignorance,
and related it to conditional g-expectation.
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Define the following set P of probability measures 1,

P =


Qθ :

dQθ

dP
= exp


−1

2

Z T

0

|θs|2ds−
Z T

0

θsdBs

ff
, sup
0≤s≤T

|θs| ≤ k

ff
, k > 0,

where the process θ satisfies the Novikov’s conditions, i.e.
E[exp{ 1

2

∫ T

0
θ2

sds}] < ∞. For ease of expression, we also introduce the fol-
lowing notation

Yt := inf
Qθ∈P

EQθ [ξ|Ft].

To construct the relationship between k-ignorance and conditional g-
expectation, we state two lemmas on infQθ∈P EQθ [ξ|Ft] in order.

The first one is a special case of Theorem 2.2 in Chen and Epstein (2002).
Chen and Kulperger (2006) defined this as the martingale representation
theorem of minimum conditional expectation. In this lemma, the set of
probability measures is a little different from Chen and Kulperger (2006),
so the brief proof of this lemma is presented in the Appendix.

Lemma 4. Given ξ ∈ L2(Ω,F , P), then Yt has the following representa-
tion: there exists an adapted process {zt} such that (Yt, zt) is the solution
of following BSDE

Yt = ξ −
∫ T

t

k|zs|ds−
∫ T

t

zsdBs, 0 ≤ t ≤ T. (2)

Remark 2.2. According to Lemma 4, we conclude that

inf
Qθ∈P

EQθ [ξ|Ft] = Yt = Ecg[ξ|Ft],

where g = −k|z|, that is, infQθ∈P EQθ [ξ|Ft] is a special kind of conditional
g-expectation. Therefore, infQθ∈P EQθ [ξ|Ft] satisfies the properties listed
in Lemma 3.

Suppose that b and σ : [0, T ] × R × R → R are continuous in (t, x)
and Lipschitz continuous in x. Let {Xt} be the solution of the stochastic

1This set of probability measures are called k-ignorance. In this case, every element
in P is absolutely continuous to P, and the generators bounded by k, which can be seen
as a measure of Knightian uncertainty, i.e., the uncertainty increases with the increase
of k.
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differential equation (SDE) below,

Xt = X0 +
∫ t

0

b(s,Xs)ds +
∫ t

0

σ(s,Xs)dBs, 0 ≤ t ≤ T, (3)

which has a unique solution such that XT ∈ L2(Ω,F , P ).
The second lemma, due to Chen and Kulperger (2006), is crucial for the

proof of the main result in this paper. The proof of this lemma is complex,
technical and closely connected with the theory of BSDE, we omit it here.
For the interested reader, ref. Chen and Kulperger (2006).

Lemma 5. Let Φ be an increase function such that Φ(XT ) ∈ L2(Ω,F , P),
if σ(t, x) > 0 for all t ∈ [0, T ] and x ∈ R, then

inf
Qθ∈P

EQθ [Φ(XT )|Ft] = EQk [Φ(XT )|Ft],

where dQk

dP = exp{− 1
2k2T − kBT }. In particular,

inf
Qθ∈P

EQθ [Φ(BT )|Ft] = E[Φ(BT − kT )|Ft],

To our knowledge, this is the first time to use the approach of BSDE
in studying irreversible investment problem. Using this method, there are
three advantages: (i) According to Lemma 4, we needn’t discuss the
dynamic consistency of infQθ∈P EQθ [ξ|Ft] because it is a special kind of
conditional g-expectation; (ii) In view of 3 and Lemma 5, we may generalize
the profit process to the form of 3; (iii) With the help of Lemma 5, we may
consider the DM that is not only uncertainty averse but also risk averse.

3. PROBLEM FORMULATION AND GENERAL RESULTS

Let b : [0, T ] × R × R → R and σ : [0, T ] × R × R → R are continuous
in (t, x) and Lipschitz continuous in x. Without loss of generality 2, we
assume that σ(t, x) ≥ 0 for any t ∈ [0, T ] and x ∈ R, and σ(t, x) 6= 0
to exclude a deterministic case. Here, suppose that the operating profit
from the utilized patent is a real-valued stochastic process (πt)0≤t≤T that
is generated by the following SDE

dπt = b(t, πt)dt + σ(t, πt)dBt, π0 > 0. (4)

2If necessary, take (−Bt) instead of (Bt) in the following.
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In the discussion that follows, we assume that the DM is risk- and
uncertainty-averse with utility function U : R → R, which is continuously
differentiable, increasing and concave. In this case, if the profit flow follows
the SDE 4 and the uncertainty averse DM evaluate the profit by a utility
function, then the value at time t of the utilized patent with expiration
time T is

W (πt, t) = inf
Qθ∈P

EQθ [
∫ T

t

e−ρ(s−t)U(πs)ds|Ft] (5)

where ρ > 0 3 is the DM’s discount rate. The infimum operator reflects
the DM’s uncertainty aversion, and the utility function reflects the DM’s
risk aversion.

In view of Lemma 5 and Fubini theorem of conditional expectation, we
may get the following general formula. The proof is relegated to Appendix.

Proposition 1. Suppose that the DM is risk- and uncertainty-averse
under k-ignorance. Then, the value of the utilized patent in 5 is given by

W (πt, t) =
∫ T

t

e−ρ(s−t)EQk [U(πs)|Ft]ds. (6)

Now, motivated by Nishimura and Ozaki (2007), we are in position to
formulate the investment problem of the DM as an optimal stopping prob-
lem, and relate the investment problem to the value of the utilized patent
described above.

To use the patent, the DM must invest I to building a factory, and the
return (πt) of this cost follows the SDE 4. Possessing the patent, as an
investment opportunity, the DM’s task is to contemplates when to invest
is the optimal invest time. Then, at time t, the DM faces the optimal
stopping problem of maximizing

min
Qθ∈P

EQθ [
∫ T

τ

e−ρ(s−t)U(πs)ds− e−ρ(τ−t)I|Ft]

by choosing an Ft-stopping time τ ∈ [t, T ], when the investment decision
is to be made. The maximum of this problem is denoted by Vt :

Vt = max
τ≥t

min
Qθ∈P

EQθ [
∫ T

τ

e−ρ(s−t)U(πs)ds− e−ρ(τ−t)I|Ft]. (7)

3Furthermore, we assume ρ > µ, otherwise, the optimal solution will possibly not
exist. We will explain this later.
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Then, Vt is the value of investment opportunity.
Now, we can split the above optimal stopping problem into the two

options available to the DM: invest now (at time t) or wait for a short time
interval, dt, and reconsider whether to invest or not after that (at time
t + dt). Then, by the same idea of Nishimura and Ozaki (2007), we may
get the following result. For the convenience of the reader, we state its
proof in the Appendix.

Proposition 2. Vt solves the following version of the Hamilton-Jacobi-
Bellman equation:

Vt = max{Wt − I, min
Qθ∈P

EQθ [dVt|Ft] + Vt − ρVtdt}. (8)

4. EXPLICIT SOLUTIONS AND COMPARATIVE STATICS

In general, it is difficult to work out explicit solutions of the functional
equation 8 and get a simple formula of the unutilized patent. However,
analysis is reduced to the case of Nishimura and Ozaki (2007) if (i) the
profit process follows geometric Brownian motion; (ii) U(x) = x; (iii) the
planning horizon is infinite. In this paper, we change the assumption of
(ii) by (ii)′ U(x) = lnx for describing the risk averse of the DM. Now, we
are in position to explicitly solve the optimal stopping problem in such a
case and get a simple explicit formula of the unutilized patent.

4.1. Explicit solution with logarithmic utility
As described in the above assumptions, we assume that the operating

profit process (πt) is generated by a geometric Brownian motion 4:

dπt = πt(µdt + σdBt), π0 > 0,

where µ and σ > 0 are two constants. Girsanov’s theorem implies that

dπt = πt((µ− σθt)dt + σdBθ
t )

4In this case, if we assume k = 0, t = 0 and U(x) = x, in view of 7, then we may get
the optimal stopping problem of the DM can be rewritten as

max
τ

E[

Z T

τ
e−ρtπtdt] =

Z T

τ
exp (µ− ρ)tdt,

thus, the value of the project could be made indefinitely larger by choosing a larger τ
as T approaching ∞, and no optimum would exist. This is the explanation of ρ > µ.
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where Bθ
t = Bt +

∫ t

0
θsds is a Brownian motion under the probability

measure Qθ. This and Itô formula yield

πt = π0 exp{(µ− 1
2
σ2)t− σ

∫ t

0

θsds + σBθ
t }.

Here, we chose the logarithmic utility, which implies that the DM has
decreasing absolute risk aversion, that is, as its wealth approaches zero, the
DM becomes infinitely risk averse.

In the discussion that follows, we will split our discussion into two steps
in order. The first one is to derive the explicit of the utilized patent, and the
second is to work out the explicit formula of the optimal stopping problem.

Firstly, in this case, 6 can be rewritten as

W (πt, t) =

Z T

t

e−ρ(s−t)EQk

»
ln

„
π0 exp{(µ− 1

2
σ2)t− σ

Z t

0

kds + σBk
t }

«
|Ft

–
ds,

simple calculations (see Appendix) yield

W (πt, t) = lnπt ·
1
ρ
(1− e−ρ(T−t))−

µ− σk − 1
2σ2

ρ
(
ρ(T − t)− 1

ρeρ(T−t)
+

1
ρ
). (9)

For simplicity, we assume that the time horizon T approaches infinity 5,
thus

lim
T→∞

e−ρ(T−t) = 0,

and

lim
T→∞

ρ(T − t)− 1
ρeρ(T−t)

= lim
T→∞

ρ

ρ2eρ(T−t)
= 0,

which and 9 imply that W (πt, t) depends only on πt, i.e.

W (πt) =
lnπt

ρ
−

µ− σk − 1
2σ2

ρ2
. (10)

In view of the expression of πt and 10, Itô’s Lemma yields (see Appendix)

dWt =
1
ρ
((µ− σθt −

1
2
σ2)dt + σdBθ

t ) (11)

5In what follows, when T goes infinity, we assume the relations between variables
in the limit also hold in infinite case. For proving these result, we need some more
mathematical techniques, here we omit it. For instance, the Girsanov’s theorem of
infinite horizon case can be found in Karatzas and Shreve (1991).
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where W0 = ln π0
ρ − µ−σk− 1

2 σ2

ρ2 .
Now, turn to the second step, we are in position to explicitly solve the

optimal stopping problem. In this case, if the planning horizon is infinite
and Wt follows 11, then Vt defined by 8 depends only on Wt, and not on
physical time t. Therefore, we are allowed to rewrite it as Vt = V (Wt) with
some V : R → R. So the Hamilton-Jacobi-Bellman equation turns out to
be

V (Wt) = max{Wt − I, min
Qθ∈P

EQθ [dVt|Ft] + Vt − ρVtdt}. (12)

To solve the above HJB equation. We conjecture that there exists W ∗6

such that the optimal strategy of the DM takes the form of “stop right
now” if Wt ≥ W ∗ and waits if Wt < W ∗. This conjecture will be verified
to be true later.

In the continuation region, that is, when Wt < W ∗, it holds from 12 and
11 that 7

ρV (Wt)dt = min
Qθ∈P

EQθ [dVt|Ft]

= min
Qθ∈P

EQθ [V ′(Wt)
1
ρ
((µ− σθt −

1
2
σ2)dt + σdBθ

t )

+
1
2

σ2

ρ2
V ′′(Wt)dt|Ft]

= min
θ

V ′(Wt)
1
ρ
(µ− σθt −

1
2
σ2)dt +

1
2

σ2

ρ2
V ′′(Wt)dt

= V ′(Wt)
1
ρ
(µ− σk − 1

2
σ2)dt +

1
2

σ2

ρ2
V ′′(Wt)dt.

Here, we also conjecture that V is twice differentiable in the continuation
region, and V ′ is positive. All these imply that V (·) satisfies the following
ordinary differential equation (ODE)

σ2V ′′(Wt) + 2ρ(µ− σk − 1
2
σ2)V ′(Wt)− 2ρ3V (Wt) = 0, (13)

with boundary conditions V (0) = 0, V (W ∗) = W ∗− I and V ′(W ∗) = 1. If
the utilized patent has no value, then the investment opportunity also has
no value, which means that the boundary condition V (0) = 0 holds; from
the expression of 12, we have V (W ∗) = W ∗−I, which implies V ′(W ∗) = 1.

6To exclude the trivial case, we assume that W ∗ ≥ ln I
ρ

, which can be obtained by

W (I, t) =
R T

t e−ρ(s−t) ln Ids in view of 6 and the approaching infinity of T.
7Here, we use the conjecture that V ′(·) is positive in the fourth equality.
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Solving equation 13 (see Appendix), we obtain

V (Wt) = C(eαWt − eβWt), (14)

where

α =
−ρ(µ− σk − 1

2σ2) + ρ
√

(µ− σk − 1
2σ2)2 + 2ρσ2

σ2
(15)

β =
−ρ(µ− σk − 1

2σ2)− ρ
√

(µ− σk − 1
2σ2)2 + 2ρσ2

σ2
(16)

C =
1

αeαW∗ − βeβW∗ (17)

and

W ∗ = max

{
ln I

ρ
,
ln(β

α )2

α− β

}
. (18)

Summarying the above results, we conclude that the value of the invest-
ment opportunity or the patent V is

V (Wt) =
{

C(eαWt − eβWt), if Wt < W ∗

W ∗ − I, if Wt ≥ W ∗.
(19)

Recall that we have made three conjectures: (i) There exists a reservation
value W ∗; (ii) V is twice differentiable in the continuation; and (iii) V ′

is positive. (ii) is simple in view of the expression 19; (iii) V ′(Wt) =
C(αeαWt − βeβWt) ≥ 0 because of C ≥ 0, α ≥ 0 and β ≤ 0; and the Figure
1 illustrates that (i) holds, where the solid and the dashed curve represent
the function of W − I and C(eαW − eβW ), respectively.

Summarying all the results above, we claim the following proposition.

Proposition 3. Suppose that the DM is risk- and uncertainty-averse
under k-ignorance with logarithmic utility, the profit process follows geo-
metric Brownian motion, and further assume that relations among vari-
ables in the finite-horizon case converges, as the horizon goes to infinity, to
those in the infinite-horizon case. Then, in the case of infinite horizon, the
value of the unutilized patent, that is, V (Wt) in the continuation region, is
given by 14 with α, β, C and W ∗ defined by 15, 16 17 and 18, respectively.
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FIG. 1. The Existence of Reservation Value of W ∗

V(W) 

W* 

W 

4.2. Comparative static
In the discussion that follows, we are in position to analyze the effect

of the risk (σ) and the uncertainty (k) on the value of the utilized patent,
the value of the unutilized patent and the value of waiting. Since most
of the interrelations are rather complex, we refer to numerical examples
in order to demonstrate the different effects. In the numerical illustrations
presented below, we fix the investment parameters, unless otherwise stated,
as follows: ρ = 0.1, µ = 0.05, I = 1, σ = 0.2, k = 0.3 and πt = e.

• The value of the utilized patent

In view of the expression 10, we conclude that

W (πt) =
ρ lnπt − µ + σk + 1

2σ2

ρ2
.

Consequently, an increasing in k will increase the value of the utilized
patent, furthermore, an increasing in σ, even if there is no uncertainty
(k = 0), will increase the value of the utilized patent. All these results
mean that the high risk and the high uncertainty will bring the high payoff,
which is consistent with the classical result and the intuition.
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• The value of the unutilized patent

Let us turn to the case of the unutilized patent, i.e. Wt ≤ W ∗, then

V (Wt) = C(eαWt − eβWt)

whereC = 1
αeαW∗−βeβW∗ and W ∗ = max

{
ln I
ρ ,

ln( β
α )2

α−β

}
. Here, without

loss of generality, we consider the cases of σ = 0.05, 0.1, 0.15, 0.2 and k =
0, 0.1, 0.2, 0.3. Figure 2 and Figure 3 listed below express that the value
of the unutilized patent increases with the increase of the risk and the
uncertainty. This and the effect on the value of the utilized patent imply
that the value of the utilized patent and the unutilized patent will increase
with the increase of risk and uncertainty.

FIG. 2. The Value of the Unutilized Patent Varies with the Varying of Risk
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• The value of the reservation profit flow

Now, we are in position to analyze the relationship between the invest-
ment timing and the risk, the uncertainty. Since the time of the investment
is fully determined by the instant current profit πt exceed the threshold level
π∗ for the first time. All that matters is to examine the effect of the risk
and the uncertainty on reservation profit flow. Expression 10 implies that

π∗ = exp{ρW ∗ +
µ− σk − 1

2σ2

ρ
},

which and W ∗ = max
{

ln I
ρ ,

ln( β
α )2

α−β

}
mean that the reservation profit flow

has the following relation with the risk and the uncertainty. Here, without
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FIG. 3. The Value of the Unutilized Patent Varies with the Varying of Uncertainty
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loss of generality, we also consider the case of σ = 0.05, 0.1, 0.15, 0.2 and
k = 0, 0.1, 0.2, 0.3. Firstly, we analyze the effect of the uncertainty on the
reservation profit flow, the conclusion is that the reservation profit flow de-
creases with the increase of the uncertainty, See Figure 4. Secondly, Figure
5 implies that the reservation profit flow increases with the increase of the
risk when σ ≤ 0.12 and k = 0, 0.1. However, after that, the reservation
profit flow decreases with the increase of the risk (Figure 6). To sum up,
when the risk and the uncertainty are small, they have a positive impact on
the reservation profit flow, which means that the DM can bear this small
risk and uncertainty; on the other hand, when the risk and the uncertainty
are large, they have a negative impact on the reservation profit flow, which
implies that the DM is risk- and uncertainty-averse. All these results are
consistent with our intuition.

5. CONCLUSION

In this paper, the approach of BSDE is employed to study the irre-
versible investment problem under k-ignorance when the DM is risk- and
uncertainty-averse. The economic motivation is that the DM is not only
uncertainty averse but also risk averse, and the mathematical innovation is
the use of BSDE made the irreversible investment problem more realistic
and the derivations more simple. For the case of logarithmic utility and
the geometric Brownian motion profit flow process, we obtain the explicit
expressions of the value of the utilized patent, the value of the unutilized
patent and the value of the reservation profit flow. Following this, we
analyze the effects of the risk and the uncertainty on the above three pa-
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FIG. 4. The Value of the Reservation Profit Flow Varies with the Varying of Un-
certainty
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FIG. 5. The Value of the Reservation Profit Flow Varies with the Varying of Risk
(k = 0, k = 0.1)
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rameters by numerical illustrations. The conclusion is that the risk and
the uncertainty have the positive impact on the value of the utilized patent
and the unutilized patent. For the small risk and uncertainty, they also
have the positive impact on the value of the reservation profit flow. All
these results are consistent with our intuition.
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FIG. 6. The Value of the Reservation Profit Flow Varies with the Varying of Risk
(k = 0.2, k = 0.3)
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APPENDIX

The proof of Lemma 4. In view of Lemma 1, BSDE 2 has a unique
solution, say (yt, zt). Put

at = ksgn(zt) and
dQa

dP
= exp

{
−1

2

∫ T

0

|as|2ds−
∫ T

0

asdBs

}
,

then sup0≤t≤T |at| ≤ k, Qa ∈ P. In this case, Girsanov’s theorem yields
that B̄t = Bt +

∫ t

0
asds is a Brownian motion under probability measure

Qa, which implies that BSDE 2 can be rewritten as

Yt = ξ −
∫ T

t

zsdB̄s, 0 ≤ t ≤ T. (A.1)

Taking the conditional expectation EQa [·|Ft] on both side of BSDE A.1,
we obtain

yt = EQa [ξ|Ft] ≥ inf
Qθ∈P

EQθ [ξ|Ft] = Yt.

On the other hand, let {ht} be an adapted process bounded by k, that
is sup0≤t≤T |ht| ≤ k. Again by Lemma 1, the following BSDE has a unique
solution (yh, zh),

yh
t = ξ −

∫ T

t

hs|zh
s |ds−

∫ T

t

zh
s dBs, 0 ≤ t ≤ T. (A.2)



330 ZENGWU WANG

Let dQh

dP = exp
{
− 1

2

∫ T

0
|hs|2ds−

∫ T

0
hsdBs

}
, then solving BSDE A.2

yields

yh
t = EQh [ξ|Ft].

Note that −htz ≥ −k|z|, which and comparison theorem of BSDE (ref. El
Karoui et al., 1997) imply

EQh [ξ|Ft] = yh
t ≥ yt,

thus

Yt = inf
Qθ∈P

EQθ [ξ|Ft] ≥ yt.

Summarying all the results above, we have

yt = Yt, t ∈ [0, T ],

which means that infQθ∈P EQθ [ξ|Ft] is the solution of BSDE 2.
The proof of Proposition 1. Fubini theorem of conditional expecta-

tion and Lemma 5 imply

W (πt, t) = inf
Qθ∈P

∫ T

t

e− ρ(s−t)EQθ [U(πs)|Ft]ds

=
∫ T

t

e−ρ(s−t) inf
Qθ∈P

EQθ [U(πs)|Ft]ds

=
∫ T

t

e−ρ(s−t)EQk [U(πs)|Ft]ds.

This is the desired result.
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The proof of Proposition 2. In this case, we have

Vt = max
τ≥t

min
Qθ∈P

EQθ [

Z T

τ
e−ρ(s−t)U(πs)ds− e−ρ(τ−t)I|Ft]

= max{ min
Qθ∈P

EQθ [

Z T

t
e−ρ(s−t)U(πs)ds|Ft]− I,

max
τ≥t+dt

min
Qθ∈P

EQθ [

Z T

τ
e−ρ(s−t)U(πs)ds− e−ρ(τ−t)I|Ft]}

= max{Wt − I, e−ρdt max
τ≥t+dt

min
Qθ∈P

EQθ [

Z T

τ
e−ρ(s−t−dt)U(πs)ds− e−ρ(τ−t−dt)I|Ft]}

= max{Wt − I,

e−ρdt max
τ≥t+dt

min
Qθ∈P

EQθ [ min
Qθ′∈P

EQθ′ [

Z T

τ
e−ρ(s−t−dt)U(πs)ds− e−ρ(τ−t−dt)I|Ft+dt]|Ft]}

= max{Wt − I,

e−ρdt min
Qθ∈P

EQθ [ max
τ≥t+dt

min
Qθ′∈P

EQθ′ [

Z T

τ
e−ρ(s−t−dt)U(πs)ds− e−ρ(τ−t−dt)I|Ft+dt]|Ft]}

= max{Wt − I, e−ρdt min
Qθ∈P

EQθ [Vt+dt|Ft]}

= max{Wt − I, e−ρdt min
Qθ∈P

EQθ [dVt|Ft] + Vt}

= max{Wt − I, (1− ρdt)( min
Qθ∈P

EQθ [dVt|Ft] + Vt)}

= max{Wt − I, min
Qθ∈P

EQθ [dVt|Ft] + Vt − ρVtdt}

where each equality holds by: splitting the decision between investing
now (at time t) and waiting for a short time interval and reconsidering
whether to invest or not after it (at time t + dt)(second); Remark 2.2
and (iii) in Lemma 3 (fourth); the definition of Vt, with t replaced by
t+dt(sixth); writing Vt+dt as Vt+dVt (seventh); approximating e−ρdt by (1−
ρdt) (such an approximation is justified since we let dt go to zero) (eighth);
and eliminating the term which is of a higher order than dt (ninth).

Derivation of 9. In this case, we have

W (πt, t) =
∫ T

t

e−ρ(s−t)EQk [lnπ0 + (µ− σk − 1
2
σ2)s + σBk

s |Ft]ds

=
∫ T

t

e−ρ(s−t)(lnπ0 + (µ− σk − 1
2
σ2)s + σBk

t )ds

=
∫ T

t

e−ρ(s−t)(lnπ0 + (µ− σk − 1
2
σ2)s + σBk

t )ds

=
∫ T

t

e−ρ(s−t)(lnπt + (µ− σk − 1
2
σ2)(s− t))ds

=
∫ T

t

e−ρ(s−t) lnπt +
∫ T

t

(µ− σk − 1
2
σ2)(s− t)e−ρ(s−t)ds
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where ∫ T

t

lnπt · e−ρ(s−t)ds = lnπt · −
1
ρ
(e−ρ(T−t) − 1)

= lnπt ·
1
ρ
(1− e−ρ(T−t)),

and ∫ T

t

(µ− σk − 1
2
σ2)(s− t)e−ρ(s−t)ds

= −1
ρ

∫ T

t

(µ− σk − 1
2
σ2)(s− t)de−ρ(s−t)

= −1
ρ
(µ− σk − 1

2
σ2)(s− t)e−ρ(s−t)|Tt

+
1
ρ

∫ T

t

(µ− 1
2
σ2 − kσ)e−ρ(s−t)ds

= −
µ− σk − 1

2σ2

ρ
(T − t)e−ρ(T−t) −

µ− σk − 1
2σ2

ρ2
(e−ρ(T−t) − 1)

= −
µ− σk − 1

2σ2

ρ
((T − t)e−ρ(T−t) − 1

ρ
e−ρ(T−t) +

1
ρ
)

= −
µ− σk − 1

2σ2

ρ
(
ρ(T − t)− 1

ρeρ(T−t)
+

1
ρ
),

which imply

W (π, t) = lnπt ·
1
ρ
(1− e−ρ(T−t))−

µ− σk − 1
2σ2

ρ
(
ρ(T − t)− 1

ρeρ(T−t)
+

1
ρ
).

This the desired result.
Derivation of 11. Itô formula and

W (πt) =
lnπt

ρ
−

µ− kσ − 1
2σ2

ρ2

imply

dWt =
1
ρ

1
πt

dπt −
1
2

1
ρ

1
π2

t

d〈π〉t

=
1
ρ
(µdt + σdBt)−

1
2ρ

σ2dt

=
1
ρ
((µ− σθt −

1
2
σ2)dt + σdBθ

t ).
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This is the desired result.
Solving ODE 11. In view of preliminary results of ODE, we have

V (Wt) = C1e
αWt + C2e

βWt ,

where

α =
−ρ(µ− σk − 1

2σ2) + ρ
√

(µ− σk − 1
2σ2)2 + 2ρσ2

σ2

≥
−ρ(µ− σk − 1

2σ2) + ρ|µ− σk − 1
2σ2|

σ2
≥ 0,

and

β =
−ρ(µ− σk − 1

2σ2)− ρ
√

(µ− σk − 1
2σ2)2 + 2ρσ2

σ2

≤
−ρ(µ− σk − 1

2σ2)− ρ|µ− σk − 1
2σ2|

σ2
≤ 0.

Furthermore, three boundary conditions imply that W ∗, C1 and C2 sat-
isfy the following equation

C1 + C2 = 0
C1e

αW∗
+ C2e

βW∗
= W ∗ − I

C1αeαW∗
+ C2βeβW∗

= 1.

Equation C1 + C2 = 0 means that C1 = −C2, we denoted C1 by C.
C(αeαW∗ − βeβW∗

) = 1, α ≥ 0 and β ≤ 0 imply that C = 1
αeαW∗−βeβW∗ ≥

0. Thus, W ∗ satisfies the following equation

eαW∗ − eβW∗

αeαW∗ − βeβW∗ = W ∗ − I,

which implies that

eαW∗
− eβW∗

= (W ∗ − I)(αeαW∗
− βeβW∗

),

differentiating the above equation w.r.t. W ∗, we have

αeαW∗
− βeβW∗

= αeαW∗
− βeβW∗

+ (W ∗ − I)(α2eαW∗
− β2eβW∗

).

Thus,

(W ∗ − I)(α2eαW∗
− β2eβW∗

) = 0,
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which and hypothesis W ∗ ≥ ln I
ρ imply that

W ∗ = max

{
ln I

ρ
,
ln(β

α )2

α− β

}
,

To sum up, we conclude that V has the following form

V (Wt) = C(eαWt − eβWt)

where

α =
−ρ(µ− σk − 1

2σ2) + ρ
√

(µ− σk − 1
2σ2)2 + 2ρσ2

σ2

β =
−ρ(µ− σk − 1

2σ2)− ρ
√

(µ− σk − 1
2σ2)2 + 2ρσ2

σ2

C =
1

αeαW∗ − βeβW∗ ,

and

W ∗ = max

{
ln I

ρ
,

ln β
α

α− β

}
.
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