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This paper investigates whether the occurrences of business cycles have
caused the fluctuations of real interest rates in the US. Based on a standard
consumption-based asset pricing model, the model incorporates a new feature
that investors have to learn about the unobservable alternations between ex-
pansions and recessions. The model captures the qualitative property that real
interest rates increase with expected future consumption growth. The simu-
lation technique of the Gibbs Sampling is used to estimate and calibrate the
model. It is discovered that the conditional variances of consumption growth
are too small to be modeled as a time-vary volatility process. This finding
casts doubt on Weitzman (2007). Furthermore, the model largely duplicates
the dynamics of real interest rates prior to Year 1980. However, it fails to
yield the drastic increase in the real interest rates during the 1981-1982 Reces-
sion, which was mainly caused by the quick tightening of monetary policy by
the Federal Reserve. It is concluded that the consumption-based asset pric-
ing models without a monetary perspective are difficult to fully capture the
dynamics of real interest rates in the US data.

Key Words: Consumption-Based asset pricing; Bayesian learning; Gibbs sam-

pling; Markov chain Monte Carlo.
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1. INTRODUCTION

Real interest rates in the US always experience troughs during recessions.
This is evident in Figure 1, where the annualized real interest rates1 of the

*I thank Siddhartha Chib, David Hinkley, John Hsu, Steve LeRoy and Jessica Wachter
for helpful suggestions. All errors are mine. The research is supported by the Cultivation
Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of
China (No: 708015).

1The annualized real interest rates are approximated by the differences between the
annualized nominal yields on three-month Treasury bills and realized inflation rates. The
implicit assumption imposed here is that expected inflations coincide with actual infla-
tions. Although real interest rates are better represented by the real yields of inflation-
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FIG. 1. The quarterly (annualized) real interest rates are approximated by sub-
tracting the actual inflation rates from the nominal yields on three-month Treasury
bills. Data on the yields of T-bills are from the Federal Reserve Statistical Release.
The inflation rates are converted from the CPI that is provided by the Bureau of Labor
Statistics. The shaded areas denote the periods of recessions defined by the NBER.

US economy are plotted from the first quarter of 1952 to the last quarter
of 2006. Before 1981, there were two large decreases in real interest rates.
One happened in 1974, when the OPEC cut the supply of oil and caused
a dramatic increase in inflation. The US economy went into a recession.
Six years after that, the other sharp drop occurred and the real interest
rate reached the historically low of -4.56%. This was due to a record-high
inflation rate triggered by the 1979 Oil Crisis. The economy went into a
recession in 1980, and another one in 1981. Similar patterns can be seen
during other recessions.

Motivated by the above evidence, I investigate in this paper whether
the occurrences of business cycles cause the fluctuations of real interest

indexed bonds, it is a common practice to use this approximation, because the Treasury
Inflation-Indexed Securities (also known as the TIPS), were not introduced until the
1990s.
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rates. The consumption-based asset pricing model considered by Lucas
(1978) is a good starting point. It considers an economy with a long-lived
representative agent, who receives aggregate endowment in every period.
The agent maximizes his lifetime expected utility by allocating his wealth
to consumption and investment. The asset market has only a riskless bond
that will return one unit of consumption for sure in the next period.

One important feature of this model is that the representative agent has
no incentive to trade bonds and consumes all his endowment in equilibrium.
This is because of the representative-agent setting where there is no one to
take the opposite trade position. Aggregate consumption therefore equals
aggregate endowment. Real interest rates are such that the no-trade condi-
tion is guaranteed. They are determined by the agent’s expected marginal
rates of substitution. In particular, under conditions that will be speci-
fied shortly, real interest rates become lower (higher) when expected con-
sumption growth rates are lower (higher). If investors expect tomorrow’s
consumption growth to be lower, they would save more and consume less
today because their marginal utilities tomorrow are higher. It takes a lower
interest rate to dissuade the investors from saving today. Similarly, when
future consumption growth is expected to be higher, investors would prefer
consuming more and saving less today due to tomorrow’s lower marginal
utilities. A higher interest rate is needed to remove their incentives to
dissave today.

Why do real interest rates first drop at the beginning and then rise near
the end of a recession? It is important to note that recessions typically
last for several quarters, which correspond to our model periods since we
use quarterly data. At the beginning of a recession, investors expect con-
sumption growth in the next quarter to be lower, thus a lower real interest
rate. But when the recession is going to bottom out, investors will become
optimistic and expect future consumption growth to be higher. Therefore
a higher interest rate will result and shape a trough right before the end of
a recession.

Despite the ultra-stark structure where money and production are ab-
stracted away, the model works surprisingly well in a qualitative sense to
capture the relation between business cycles and real interest rates. But
how would it fare with the data quantitatively? This is the question that
I will answer.

In order for the model to produce time-varying interest rates, I introduce
Bayesian learning to the benchmark model. In particular, I assume that
recessions and expansions are unobservable. Investors have to learn about
the true state of the world by observing realized data on consumption
growth. In addition, they also have to learn about the (conditional) means
and (conditional) variances of the process that governs the dynamics of
consumption growth. Since real interest rates depend on the trade-offs
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between current marginal utilities and expected future marginal utilities,
they will start to fluctuate and reflect people’s changing expectations as
investors update their information.

These assumptions are realistic. Although a variety of macroeconomic
data have been made easier to access and updated in a timely manner, in-
vestors are still not a hundred percent certain about whether a most recent
expansion has ended or a new recession is starting. Even economists have
to examine several more quarters’ data to decisively determine whether
a new business cycle has occurred in a previous time period. Therefore,
it would be unrealistic to assume that rational investors possess perfect
information about the true states of business cycles. Furthermore, no in-
vestors would have the ability of perfectly foreseeing the growth prospect
and risks as represented by conditional means and conditional variances,
respectively. It is therefore reasonable to assume that these parameters are
not readily known.

With both structural uncertainty (unobservable states) and parameter
uncertainty (unknown conditional means and variances), the model has the
potential of yielding low short-term interest rates that are comparable with
the data. Mehra and Prescott (1985) point out that the consumption-based
price model with CRRA preferences yields real interest rates that are too
high to match the data. Structural and parameter uncertainty, as an im-
portant source of risk that affects investors’ decision making, fundamentally
changes investors’ perception and expectation about the future. Without
perfect information, the investors living in this world are more uncertain
about the future. Being risk averse, they would want to save more today.
Real interest rates are therefore lower to prevent them from saving in the
world with imperfect information. Moreover, Zhang (2007) calibrates the
same type of model but with the assumption of only one unknown pa-
rameter. The main finding is that parameter uncertainty is not enough to
account for the low interest rates. By introducing unobservable state vari-
ables that govern the occurrences of business cycles, together with more
unknown parameters, we can reasonably expect that the model will better
duplicate the data.

Structural uncertainty has already been prescribed by Weitzman (2007)
as a resolution to three asset pricing puzzles. While Weitzman (2007)
focuses on the steady-state implications of learning, this paper studies the
interest rate dynamics that are implied by Bayesian learning.

To incorporate learning about economic expansions and recessions, we
model the exogenous process of consumption growth as an autoregressive
process of order one with two-state Markov-switching conditional means
and variances. That is, we assume that the conditional mean and the
conditional variance of the AR process at any point in time can each take
one of two possible values: high or low. Although it is natural to associate
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recessions (expansions) with low (high) conditional means and high (low)
conditional variances, whether this association is valid is ultimately an
empirical issue.

Indeed, our estimation results suggest that the conditional means are
typically higher and the conditional variances lower in expansions than in
recessions. However, the differences in the conditional variances are much
less significant. This is because the data of consumption growth are much
less volatile than asset prices, whose volatilities are often (appropriately)
modeled as a stochastic process. The implication is that it is unnecessary
to model the conditional volatilities of consumption growth as a stochastic
process, since the estimates in different states would not be distinguished
anyways. This finding casts doubt on Weitzman (2007), who claims that
all three asset pricing puzzles can be resolved. His results crucially de-
pend on modeling the precisions (defined as the reciprocals of variances) of
consumption growth as a stochastic process.

Since the introduction of the Markov processes significantly complicates
the inference of unknown parameters and hidden states, we utilize the
Gibbs Sampling, a technique of the more general family of simulation meth-
ods called the Markov Chain Monte Carlo, to simulate samples that ap-
proximate posterior moments and asset prices.

The results show that investors with Bayesian learning have been in-
formative about the occurrences of business cycles. In other words, their
subjective beliefs about which economic states they live in match the al-
ternations of expansions and recessions in the data. However, the results
of interest rates are mixed. Although the model’s results largely follow the
trend of the real interest rates in the data before 1980, it misses the volatile
episode from 1980 to 1982. As can be observed from Figure 1, a prominent
feature is that the 1980-1982 period has seen dramatic changes in the real
interest rates. First, real interest rates started to rise sharply from the
fourth quarter of 1980 and then reached an unprecedented level one year
after that. Then the rates briefly dropped and rose again to the all-time
high of 9.55% (per annum) in the second quarter of 1982. This huge in-
crease in the real interest rates has been associated with the shift from an
expansionary to a contractionary monetary policy by the Federal Reserve
chaired by Paul Volcker. We therefore conclude that, despite the success of
using structural uncertainty to match the average level of real interest rates
in the data, incorporating Bayesian learning into the consumption-based
asset pricing models will not explain fluctuations of real interest rates in
the US economy. The model is missing a monetary perspective that may
be fruitful in duplicating the interest-rate dynamics. This approach is left
for research.

Wachter (2006) uses a consumption-based asset pricing model to explain
the term structure of nominal interest rates. The driving force of her model
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is a time-varying price of risk generated by external habit. In comparison,
without deviating from CAAR preference, my model is driven by Bayesian
learning about the hidden state and unknown parameters. I do not consider
the term structure and only focus on the quarterly real interest rates in this
paper.

The rest of the chapter is organized as follows. Section 2 describes the
consumption and inflation data and their sources. A model with Bayesian
learning is studied in Section 3. Section 4 estimates the model and reports
the results. The conclusion is in the last section.

2. THE DATA

I use quarterly data from the first quarter of 1952 to the fourth quarter of
2006 for all the series in this paper. The real growth rates of consumption
of nondurable goods and services are used as indicators of business cycles.
They were no doubt at lower levels near the ends of recessions, as can
be seen from Figure 2. The average duration of these recessions is ten
months, which amounts to at least three quarters. These recessions are
defined by the National Bureau of Economic Research through examining
a comprehensive combination of macroeconomic time series such as the
real GDP and personal income excluding transfer payments2. Typically,
the NBER defines a recession as the one that starts from the peak of a
business cycle and ends at the trough. The series of consumption growth
of non-durable goods and services mostly follows this pattern3 and tracks
the historical US business cycles pretty well. Furthermore, the sample
correlation coefficient between the real interest rates and the recession-
tracking consumption growth is .4, which is significantly positive.

Figure 2 plots the quarterly consumption growth rates, which are denoted
by {yt} and exponentially compounded:

yt = ln
Ct

Ct−1
(1)

where Ct denotes real aggregate consumption of nondurable goods and
services at time t. The sample mean and the sample standard deviation
are 0.0237 and 0.0193 (per annum), and the sample autocorrelations of the
first four orders are 0.31, 0.20, 0.19 and 0.06, respectively. So one would not

2See the NBER’s official website http://www.nber.org/cycles/recessions.html for the
details about how a business cycle is determined.

3The exceptions are the recession in 1970 and the one in 2001. This is mainly due to
the difference in measurement frequencies. While the recession periods defined by the
NBER are precise up to months, the series of consumption of non-durables and services
provided by the Bureau of Economic Analysis (BEA) is of quarterly frequency.
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FIG. 2. Quarterly (annualized) real growth rates of consumption of non-durable
goods and services from the BEA. The series are obtained by subtracting the growth
rates of CPI from the nominal growth rates of consumption of non-durable goods and
services. The shaded areas are recession periods defined by the NBER.

defend too strongly that the quarterly consumption growth series follows a
Gaussian random walk with white noise.

The quarterly real interest rates are obtained by deflating the nominal
rates by the inflation measure of CPI and are plotted in Figure 1. The sam-
ple mean and the sample standard deviation are 0.0168 and 0.0213 (per an-
num), respectively. As mentioned in the Introduction, anecdotal evidence
seems to suggest that the fluctuations of real interest rates are closely re-
lated to business cycles. In the next section, we investigate whether the
asset pricing models of the Lucas type, with the added feature that in-
vestors learn about business cycles using the Bayes rule, are promising to
capture dynamics of the real interest rates seen in the data.

3. THE MODEL

Consider an exchange economy populated by a long-lived representative
agent, who receives aggregate endowment in terms of the perishable con-
sumption goods in every period. The agent maximizes his lifetime expected
utility by allocating his wealth to consumption and investment. His pref-
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erence is represented by the standard time-additive utility with Constant
Relative Risk Aversion: C1−γ/1 − γ. The agent maximizes his life-time
expected utility:

E{
∞
∑

t=0

βt C
1−γ
t

1 − γ
} (2)

where β < 1 measures his time preference and γ > 0 is the parameter
of relative risk aversion. In the asset market, the only tradable asset is a
one-period riskless zero-coupon bond, which – if bought at time t – will
pay its holder one unit of the consumption good at time t + 1 for sure.

In equilibrium, the asset market clears such that no one holds a positive
net position on the risk-free asset and the agent consumes all his endow-
ment:

Ct = Wt, for all t (3)

Then the growth rate yt defined in (1) also represents the growth of ag-
gregate endowment process. It follows some exogenous stochastic process
which is yet to be specified.

The equilibrium first order condition, also known as the Euler equation,
is:

Et{Mt+1R
f
t } = 1 (4)

where Et is the expectation operator conditional on investors’ information
up to period t, Rf

t is the (gross) risk-free rate of return from time t to t+1,
and Mt+1 is the pricing kernel, which is the stochastic marginal rate of
substitution

u′(Ct+1)/u′(Ct) = βC−γ
t+1/C−γ

t (5)

Using (1), (4) and the market clearing condition (3), we have that the
(gross) return of the risk-free asset is:

Rf
t =

1

βEt{W−γ
t+1/W−γ

t }
=

1

βEt exp(−γyt+1)
(6)

which can be computed if the stochastic process for the growth rate is
specified.

I assume that the consumption growth process is an autoregressive pro-
cess of order one:

yt − µst
= ρ · (yt−1 − µst−1

) + σvt
εt, εt

iid∼ N(0, 1) (7)

To capture the alternation of business cycles, we introduce two hidden-
state variables: st and vt, each of which can take one of the two possible
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values: 0 and 1. The conditional mean µst
and the conditional variance

σ2
vt

at time t can be either high or low depending on the values of st and
vt:

µst
=

{

λ, if st = 0
λ + ξ, if st = 1

, ξ > 0.

σ2
vt

=

{ 1
θ
, if vt = 0

1
η
, if vt = 1

, θ > η.

In other words, λ and λ + ξ are the conditional means in the low-mean
and high-mean state, respectively. And 1/θ and 1/η respectively represent
the variance in the low-variance and high-variance state. Alternatively, the
conditional mean and variance can be expressed in a more compact form:

µst
= λ + ξst, ξ > 0 (8)

σ2
vt

=
1

θ
+ (

1

η
− 1

θ
)vt, provided that η < θ (9)

We further assume that {st} and {vt} follow two independent two-state
Markov processes with transition matrices:

(

1 − p p
q 1 − q

)

and

(

1 − pv pv

qv 1 − qv

)

,

respectively. All parameters and states are unknown. Therefore the repre-
sentative agent has to learn about the values of these parameters and the
unobservable states {st} and {vt} in which they have lived. Since we are
only concerned with the states within the span of our sample period, we
can treat the unknown states in the same way with the unknown param-
eters because the unknown states during our sample period have all been
realized and are therefore fixed4. Note that this econometric model is es-
sentially a mixture of four AR(1) processes with Gaussian innovations. The

4It is worth emphasizing that the latent state variables can be quite different concep-
tually depending on whether they have been realized or not. If they have been realized,
then they are fixed but not observable by definition. If they have not been realized,
then they are random variables objectively. The realized ones are intrinsically different
from the unrealized ones, although they are all unobservable. The realized states are
like unknown parameters. The researchers (investors and econometricians alike) know
that the realized states never change their values. But they just do not know which
value (0 or 1) they take. In a Bayesian world, researchers treat the realized states as
subjective random variables, just like the way they treat unknown parameters. The
unrealized states, however, are objective random variables that are governed by some
distributions. Since we are dealing with the realized states because we are investigating
the history but not predicting the future, it is in this sense that the states are indifferent
from parameters.
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motivation for introducing two Markov switching processes is discussed in
the Introduction and is therefore not repeated.

Our stochastic structure is similar to the one studied in Hamilton (1989),
Albert and Chib (1993), Kim and Nelson (1996). These authors document
the evidence that the mean and the variance of the growth rates of macroe-
conomic time series such as GNP and GDP in expansions are different from
those in recessions. However, none of them examine the time series of con-
sumption of non-durable goods and services. The consumption series is
much less volatile than GDP or GNP. As will be seen in the next section,
our results show that the variance in the high-variance state differs little
from that in the low-variance state. This implies that it is perhaps redun-
dant to model the variance as a Markov-switching process. More details
about model selection are provided in the next section.

Our model can be reduced to three special cases:

Model M: If vt = 0 for all t and pv = qv = 0, then only the mean is
switching between two states and the model is the same as the one studied
in Hamilton (1989).

Model V: If st = 0 for all t and p = q = 0, then only the variance is
switching between two states.

Model MVS: If st = 1−vt for all t and p = qv and q = pv, then the mean
and the variance is governed by the same Markov process and the model
collapses into the one in Albert and Chib (1993).

We have four models — the three special cases plus our model (Model

MV) in (7)— to compare and choose from. This is the so-called “Bayesian
model selection” problem in the Bayesian decision theory. The criterion of
selecting a best Bayesian statistical model is similar to the maximum like-
lihood criterion by which competing estimators are chosen. In a Bayesian
model selection framework, the true model that generates the data is not
observable and therefore can be treated as an unknown state. The prior
subjective belief about a model’s authenticity can be characterized and
shall be interpreted as a decision maker’s5 degree of confidence about
whether the data are generated by that model. For example, suppose the
prior beliefs about two competing models indexed by 1 and 2, π(m = 1)
and π(m = 2), are fifty and fifty. It means that the decision maker has
no information about which model better describes the data and therefore
assigns equal probabilities to each model a priori. After the decision maker

5The decision maker refers to a researcher, who should be interpreted as a sophisti-
cated investor. This is to maintain the presumption in the previous chapter that rational
investors are as smart as econometricians and use the Bayes rule to learn about unknown
parameters and unobservable states. Uncertainty about a model, as discussed above, is
essentially similar to uncertainty about an unobservable state. Therefore, we are still
modeling the uncertainty of the investors even when model uncertainty is incorporated.
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obtains {YT } data, she can update her subjective belief about the validity
of each model using the Bayes rule:

π(m = i|YT ) =
π(m = i)f(YT |m = i)

f(YT )
, i = 1, 2. (10)

This is the posterior belief about whether a model is the data generating
model. The true model state m is updated and learned in a similar fashion
to those unknown parameters. The posterior odds, which incorporates the
information of both the marginal likelihood function (given a model) and
the prior belief about a model, dictates which model is better. It is defined
as the ratio:

π(m = 1|YT )

π(m = 2|YT )
=

π(m = 1)

π(m = 2)

f(YT |m = 1)

f(YT |m = 2)
(11)

If this ratio is greater (less) than one, then Model 1 is more (less) favorable
than Model 2. In the case where prior beliefs about two models are the
same, the posterior odds reduces to the ratio of two marginal likelihood
functions. This ratio is also known as the Bayes factor of Model 1 relative
to Model 2. The model with the highest marginal likelihood, or a Bayes
factor greater than one, is then the obvious choice. We apply this idea to
our setting and show in the next section that Model M is the best model
that fits the data.

4. BAYESIAN INFERENCE

It can be seen from the previous section that the posterior distributions
are vital for the inference of unknown parameters and the calculation of
asset prices that essentially depends on investors’ subjective beliefs about
unknown parameters and latent states. The commonly used Monte Carlo
simulation methods no longer applies here, because it is impossible to di-
rectly generate simulations from the posterior distribution, which is a joint
distribution of all unknown parameters and latent states. Thus the infer-
ence problem of our model is significantly more complexed due to the latent
Markovian states.

Fortunately, the advent of a computational technique called the Markov

Chain Monte Carlo (MCMC) has tremendously eased the inference prob-
lems in Bayesian models. The technique is so powerful that virtually any
Bayesian statistical models can be estimated. While we do not intend to
give a literature review about the MCMC method, we provide some ref-
erences for interested readers. For an in-depth coverage of the topic, see
Gamerman and Lopes (2006). For introductory expositions of the Gibbs

Sampling and its more general version of the Metropolis-Hastings algo-
rithm, which are two important and widely-used algorithms of the MCMC
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family, see Casella and George (1992) and Chib and Greenberg (1994),
respectively.

We use the technique Gibbs sampling to make posterior inference about
the parameters and the unobservable states. We illustrate the idea and
procedure of the MCMC method through our context. Our model differs
from traditional Bayesian models in that both the conditional means and
variances follow some regime switching processes that are unobservable.
However, these unobservable regimes or states pose no problems for pos-
terior inference, as pointed out by Albert and Chib (1993). These authors
devise a technique to generate random samples of the latent states in their
Gibbs sampler and average the latent states out to obtain the p.d.f. of the
posterior distribution of only unknown parameters. More details about this
technique will be provided later in this section.

Formally, there are nine unknown parameters Θ = (λ, ξ, ρ, θ, η, p, q, pv, qv)6

and 2T unobservable states ZT = (ST , VT ), where ST = (s1, . . . , sT ) and
VT = (v1, . . . , vT ) in our model. We first specify the prior distributions and
then outline the simulation procedure.

The conjugate prior distributions are of our choice. It is further assume
that the prior distributions of all parameters and states are independent:

π(λ) ∼ N(λ0, L
−1)

π(ξ) ∼ N(ξ0, X
−1)I{ξ>0}

π(θ) ∼ Gamma(aθ
0, b

θ
0)I{θ>δ}, where δ > 0.

π(η) ∼ Gamma(aη
0 , b

η
0)I{θ>δ} and η < θ a.s.

π(p) ∼ Beta(u01, u00) and π(q) ∼ Beta(u10, u11)

π(pv) ∼ Beta(v01, v00) and π(qv) ∼ Beta(v10, v11)

Note that ξ is restricted to be positive since the state of s = 1 is interpreted
as the high-mean state. In a similar sense, η is required to be less than
θ because the state v = 1 is the high-variance state, meaning that 1/η is
higher than 1/θ, the variance when v = 0. Both precisions are truncated
due to the same reason as in the previous chapter. Namely, investors with
CRRA preferences would be unrealistically scared of the zero-probability
event that precisions of consumption growth are zero and the variance could
go to infinity. They would be willing to pay infinity for the riskless bond

6In this chapter, we do not use asterisks to distinguish the true parameters from
subjectively perceived random variables as we did in the previous chapter. This should
not cause confusion because the context always makes it clear which is intended. For
example, those that appear after the conditional signs are considered constant, and
those that appear before conditional signs are treated as running variables of density
functions, and those that show up elsewhere are considered as random variables.
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to hedge against such an event. We bound the support of precisions away
from zero to eliminate this extreme case a priori.

The joint p.d.f. of T data YT = (y1, . . . , yT ) conditional on the all pa-
rameters Θ and unobservable states ZT is f(YT |Θ, ZT ). The joint posterior
distribution of interest is

f(Θ, ZT |YT ) ∝ π(Θ, ZT )f(YT |Θ, ZT ) (12)

If this joint distribution could be directly simulated from, then posterior
inference and asset pricing, which are related to some moments of the
posterior distribution, would be straightforward because this would be the
pure Monte Carlo method that depends on random simulations from the
target distribution of (12). Unfortunately this distribution is only available
for direct simulation under very special cases like the one studied in the
previous chapter. Nevertheless, simulation from (12) can still be carried out
in an indirect way. This is where the MCMC method comes into play. It
involves constructing a Markov chain that has the desired distribution (12)
as its stationary distribution. The samples generated from this process can
be approximately viewed as being generated from the limiting distribution
of (12). Posterior moments can be then estimated by the corresponding
ergodic averages of the simulated sample—just like what is done in the
pure Monte Carlo method. Hence the name “Markov Chain Monte Carlo.”
Various algorithms of the MCMC family differ in how the Markov chain is
constructed.

The Gibbs sampler, in particular, builds a Markov Chain out of a series
of full conditional distributions7 that eventually converge to the joint dis-
tribution in (12). These full conditional distributions are usually some well
known distributions that can be directly simulated from. We illustrate the
idea of MCMC in the context of Model MV. The procedure is as follows:

1. Given Θ(i) that represents the i-th draws of all parameters

(ξ(i), ρ(i), θ(i), η(i), p(i), q(i), p
(i)
v , q

(i)
v ), generate the i+1-th draws of Z

(i+1)
T =

(S
(i+1)
T , V

(i+1)
T ) from the conditional distribution of f(ZT |YT , Θ(i)).

2. Generate λ(i+1) from the conditional distribution of f(λ|YT , Z
(i+1)
T , Θ(i)),

given the i-th draws of Θ(i) and the (i + 1)-th draws of Z
(i+1)
T obtained

from Step 1.
3. Generate ξ(i+1) from the conditional distribution of

f(ξ|YT , Z
(i+1)
T , λ(i+1), ρ(i), θ(i), η(i), p(i), q(i), p

(i)
v , q

(i)
v ). Notice that the (i +

1)-th draw of λ from the last step replaces the i-th draw.
4. Generate ρ(i+1) from the conditional distribution of

f(ρ|YT , Z
(i+1)
T , λ(i+1), ξ(i+1), θ(i), η(i), p(i), q(i), p

(i)
v , q

(i)
v ). Similar to Step 3,

7A full conditional distribution of one random variable is defined as the distribution
of this random variable conditional on all the other variables in a model.
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the (i + 1)-th draw of ρ is plugged into the conditional density. The pro-
cedure continues this way as newly generated samples recursively replace
old ones.

5. Generate (θ(i+1), η(i+1)) from the conditional distribution of

f(θ, η|YT , Z
(i+1)
T , λ(i+1), ξ(i+1), ρ(i+1), p(i), q(i), p

(i)
v , q

(i)
v ).

6. Generate (p(i+1), q(i+1)) from the conditional distribution of

f(p, q|YT , Z
(i+1)
T , λ(i+1), ξ(i+1), ρ(i+1), θ(i+1), η(i+1), p

(i)
v , q

(i)
v ).

7. Generate (p
(i+1)
v , q

(i+1)
v ) from the conditional distribution of

f(pv, qv|YT , Z
(i+1)
T , λ(i+1), ξ(i+1), ρ(i+1), θ(i+1), η(i+1), p(i+1), q(i+1)).

8. Repeat Step 1.

After repeating the above procedure of M times, a simulated sample,

denoted by {Θ(i), Z
(i)
n }M

i=m+1, is obtained by discarding the first m draws.8

Under some regularity conditions, the random draws of (Z
(M)
T , Θ(M)) con-

verges to the joint posterior distribution of π(Θ, ZT |YT ) as M approaches
infinity. Asset prices, which are some functions g(·) of the posterior mo-
ments, can then be calculated with the simulated sample because the Law
of Large Numbers holds:

1

M − m

M
∑

i=m+1

g(Θ(i), Z(i)
n )

a.s.→ Eπg(Θ, ZT ), as M → ∞ (13)

where Eπ indicates that the expectation is taken with respect to the joint
posterior distribution in (12).

We can now derive all the full conditional distributions after specifying
the conjugate prior distributions. It can be shown that the full conditional
distributions are all known distributions that are easy to sample from.
The details of the derivation of these full conditional distributions are in
the Appendix.

Given all the prior distribution and full conditional distributions derived,
the Gibbs sampler can be readily initiated by picking some arbitrary start
values for all the parameters and states, which are specified in the Ap-
pendix.

We run the above iterations for 10000 times and discard the first 1000
runs. The posterior moments are then estimated by the ergodic average by
virtue of the Law of Large Numbers:

Eπg(Θ, ZT ) ≈ 1

M − m

M
∑

i=m+1

g(Θ(i), Z(i)
n ) (14)
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TABLE 1.

Estimation results for Model MV

Model MV: Log-marginal likelihood = 832.74

Posterior

Parameters Prior Mean Std. 90% Credible Set

λ N(−.002, .2) .0050 .0009 [.0029, .0066]

ξ N(.002, .2)I{ξ>0} .0015 .0011 [.0001, .0040]

ρ N(0, 1)I{|ρ|<1} .3084 .0911 [.1311, .4854]

1/
√

θ θ ∼ Γ(.01, .0005)I{θ≥10} .0061 .0004 [.0052, .0069]

1/
√

η η ∼ Γ(.01, .001)I{η≥10} .0068 .0004 [.0061, .0078]

p Beta(1, 4) .2083 .1085 [.0445, .4563]

q Beta(1, 4) .1629 .0932 [.0309, .3805]

pv Beta(1, 4) .2541 .1037 [.0825, .4849]

qv Beta(1, 4) .1322 .0606 [.0416, .2755]

TABLE 2.

Estimation results for Model M

Model M: Log-marginal likelihood =857.93

Posterior

Parameters Prior Mean Std. 90% Credible Set

λ N(−.002, .2) .0049 .0011 [.0021, .0064]

ξ N(.002, .2)I{ξ>0} .0024 .0020 [.0002, .0072]

ρ N(0, 1)I{|ρ|<1} .2800 .0792 [.1180, .4324]

1/
√

θ θ ∼ Γ(.01, .0005)I{θ≥10} .0052 .0002 [.0048, .0058]

1/
√

η — — — —

p Beta(1, 4) .1232 .0833 [.0119, .3204]

q Beta(1, 4) .1495 .0973 [.0188, .3868]

pv — — — —

qv — — — —

4.1. Estimation Results and Model Selection

We proceed using the numerical procedure outlined in the previous sec-
tion and estimate each one of the four models postulated. The calculation
of the marginal likelihood function follows the method suggested by Chib
(1995). All prior and posterior estimates are summarized in the tables
labeled from Table 1 to Table 4.

As can be seen from these results, the estimates of the AR(1) coefficient
differ little across various models. They are all very close to the the first

8This is because the chain has not yet converged to the target distribution during the
early iterations. The sample drawn during this period should be therefore thrown away.
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TABLE 3.

Estimation results for Model V

Model V: Log-marginal likelihood =838.46

Posterior

Parameters Prior Mean Std. 90% Credible Set

λ N(−.002, .2) .0060 .0006 [.0047, .0072]

ξ — — — —

ρ N(0, 1)I{|ρ|<1} .3062 .0864 [.1377, .4750]

1/
√

θ θ ∼ Γ(.01, .0005)I{θ≥10} .0058 .0004 [.0049, .0065]

1/
√

η η ∼ Γ(.01, .001)I{η≥10} .0065 .0004 [.0058, .0075]

p — — — —

q — — — —

pv Beta(1, 4) .1559 .0798 [.0321, .3366]

qv Beta(1, 4) .0899 .0527 [.0189, .2223]

TABLE 4.

Estimation results for Model MVS

Model MVS: Log-marginal likelihood = 828.53

Posterior

Parameters Prior Mean Std. 90% Credible Set

λ N(−.002, .2) .0053 .0008 [.0037, .0068]

ξ N(.002, .2)I{ξ>0} .0015 .0010 [.0001, .0039]

ρ N(0, 1)I{|ρ|<1} .3066 .0961 [.1178, .4920]

1/
√

θ θ ∼ Γ(.01, .0005)I{θ≥10} .0062 .0005 [.0053, .0080]

1/
√

η η ∼ Γ(.01, .001)I{η≥10} .0070 .0005 [.0063, .0081]

p Beta(1, 4) .1390 .0625 [.0435, .2868]

q Beta(1, 4) .2502 .1014 [.0839, .4861]

pv Beta(1, 4) .2502 .1014 [.0839, .4861]

qv Beta(1, 4) .1390 .0625 [.0435, .2868]
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order sample autocorrelation of .31. The jump size of the mean ξ from
the low-mean state to the high-mean state is larger for Model M than for
Model MV or Model MVS. This is because Model M gives a better fit to
the data and the estimation tends to be more efficient.

Table 1 shows that the posterior estimates of the standard deviations in
the low-variance and high-variance state, 1/

√
θ and 1/

√
η, are respectively

.0061 and .0068, which are very close to each other. For Model V in which
only the variance but not the mean switches between two states, Table 3
reports a similar result that the standard deviations in two different states
are .0058 and .0065, whose difference is only .0007. This is mainly because
the consumption growth series is well known to be smooth and less volatile
than GNP or GDP. Considering the variance of consumption growth as a
two-state Markov switching process perhaps makes little difference from
modeling the variance as a constant. Weitzman (2007) assumes that the
variance of consumption growth follows a stochastic process defined on a
continuous state space. In light of our result that even a two-state Markov
switching process of variance does not yield distinguishing estimates, one
is wondering whether modeling the low variance of consumption growth as
a stochastic process is necessary at all.

Our estimation results show that Model M in which only the mean follows
a two-state Markov switching process has the highest marginal likelihood
and therefore is the best model by the Bayesian model selection criterion
discussed above. In the next subsection, we use Model M to calculate the
return of the riskless bond.

4.2. Asset Pricing Implications

Figure 3 plots investors’ subjective unconditional probabilities of high-
mean states of expansions. These are the probabilities such that each state
equals one given the data Yt (Pr(st = 1|Yt)) regardless of the previous state.
For example, the representative agent’s perceived unconditional probability
of an expansion in the first quarter of 1980 when she only has data up to
that time is .25. As can be seen from the graph, the agent’s estimates
of the probabilities of high-mean states are low at the beginnings of each
recession and then becoming rising near the ends of each recession. This
implies that the representative agent in our model does a pretty good job
in learning about which state of the economy she lives in. Her successful
learning about the alternations of business cycles has a profound impact
on her consumption and saving behavior that determines bond returns in
our model. At the beginning of an economic downturn, her view about
the future economy, in terms of her estimate of next period’s consumption
growth, is not optimistic. Consequently, she would have an incentive to
increase her demand of the safe bond and drives down the returns. When
the recession is ending, the agent becomes optimistic and tend to reduce
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Subjective unconditional probabilities of expansions

FIG. 3. The subjective unconditional probabilities of high-mean states of expansion
(Pr(st = 1)) across time, together with the shaded areas that denote the historical
recessions.

her bond holdings. The real interest rates are higher to prevent the agent
from trading. As will be seen from the upcoming results, our model’s
predictions of bond returns fall at the beginnings and then rise at the ends
of each recession.

Before we present the results, we first derive the expression of bond
returns. From the asset pricing section in the previous chapter, we know
that the return of the riskless bond is

Rf
t = ES

t [exp(−γyt+1)] (15)

where the operator ES
t denotes the subjective expectation of next period

consumption growth conditioned on this period’s information. By the law
of iterative expectations, the above equation can be expressed as

Rf
t = EΘ,Z

t E[exp(−γyt+1)|Θ, Zt] (16)

Identifying the inner expectation as the moment generating function of a
normal distribution with mean µt+1 = µst+1

+ρ(yt−µst
) and variance 1/θ,
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we have that

E[exp(−γyt+1)|Θ, Zt] = E[exp(−γµt+1 +
γ2θ

2
)|st] (17)

Depending on the state at time t, the expectation in the above equation
equals

C(Θ, st)E[exp(−γξst+1)|st = 0]1−stE[exp(−γξst+1)|st = 1]st (18)

where

C(Θ, st) = exp{−γ[(1 − ρ)λ + ρ(yt − ξst) +
γ2θ

2
]} (19)

and

E[exp(−γξst+1)|st = 0] = 1 − p + p exp{−γξ} (20)

and

E[exp(−γξst+1)|st = 1] = q + (1 − q) exp{−γξ} (21)

Therefor the riskfree rate of return can be expressed as

Rf
t = EΘ,Z

t g(Θ, Z) (22)

where the function g(Θ, Z) is just the term in (18). The random samples
(Θ(i), Z(i))M

i=m+1 generated from the above numerical procedure can be
used to calculate the riskfree rate of return:

Rf
t ≈ 1

M − m

M
∑

i=m+1

g(Θ(i), Z(i)) (23)

The riskfree rate of returns are calculated this way at each time point
t in our sample. Correspondingly, the MCMC procedure is performed by
assuming that the sample is only available up to time t. This is to mimic
the situation in which when making decisions at time t, investors do not
have information beyond that time to rationally calculate the return of the
riskless bond. Therefore the MCMC simulations need to be run in T sets
in order to produce a times series of bond returns, which are plotted as a
dotted line and compared with the historical real interest rates (solid line)
in Figure 4.

The model’s results largely mismatch the dynamics of real interest rates.
Although it seems to successfully predict the drops of interest rates in the
first three recessions prior to 1965 and in the recession of 1980, the model
fails to catch a few spikes in the 1960s, underestimates the trough in the
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FIG. 4. Model M’s predictions of returns of the riskless bond across time. γ = 2
and β = .99. The broken line represents the model’s predictions and the solid line is the
series of historical real interest rates.

recession of 1974 and overestimates the rate drop in the 1990 recession.
Most importantly, the spectacular failure of the model is that it fails to
explain the hype of the real interest rate and provides a completely opposite
prediction of the interest rate during the 1981-1982 recession. The huge
jump of the interest rate in 1981 is known to be associated with the shift of
monetary policy from an accommodating to a restrictive one. Therefore,
if one is to use the Lucas-type asset pricing models to explain the interest
rate fluctuations seen in the data, especially the dramatic increase in the
early 1980s, one cannot hope to do a good job without incorporating a
monetary perspective.

5. CONCLUSIONS

I investigate whether business cycles can explain the dynamics of real in-
terest rates in the US economy. In particular, I use a Lucas-type consumption-
based asset pricing model with an exchange economy and a representative
agent, with an added feature that the representative investor does not have
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perfect information and has to learn about business cycles. To incorporate
learning about economic expansions and recessions, I model the exogenous
consumption growth process as an autoregressive process of order one with
two two-state Markov-switching conditional means and variances. This
model is a generalized version of many models that are previously studied
in the literature. A numerical technique of the MCMC is used to estimate
parameters and compare competing econometric models. Our estimation
results indicate that the model with only Markov switching conditional
means best describe the data of consumption growth. We further argue
that modeling the low-volatility of consumption growth as a continuous
stochastic process is not necessary because our model’s estimates of the
high variance and the low variance are virtually indifferent. Finally, we
show that our model’s predictions largely duplicates the fluctuations in the
real interest rates before 1980, but miss the drastic increase in the early
1980s. We conclude that, despite the recent success of using structural un-
certainty to explain the average level of real interest rates in the data, the
consumption-based asset pricing models without a monetary perspective
are difficult to fully capture the dynamics of real interest rates in the US
data.

APPENDIX A

We now derive the full conditional distributions. We randomly draw

T mean states S
(0)
n = {s(0)

1 , s
(0)
2 , . . . , s

(0)
n } and T variance states V

(0)
n =

{v(0)
1 , v

(0)
2 , . . . , v

(0)
n } according to a Markov chain in which the transition

probabilities are 1/2. The initial values of the parameters to start the
iterations are given as follows:

λ(0) ξ(0) ρ(0) θ(0) η(0) p(0) q(0) p
(0)
v q

(0)
v

0 0 0 200 100 1/2 1/2 1/2 1/2

The generation of all latent states follows the procedure suggested by
Chib (1996).

The conditional distribution for λ given all other parameters Θ−λ and
latent states ZT is a normal distribution:

π(λ|YT , Θ−λ, ZT ) ∼ N(λT , σ2
λT )

where

λT =
(1 − ρ)

∑T
t=2

(yt−ξst)−ρ(yt−1−ξst−1)
σ2(vt)

+ λ0L

(1 − ρ)2
∑T

t=2 1/σ2(vt) + L
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and

σ2
λT =

1

(1 − ρ)2
∑T

t=2 1/σ2(vt) + L

Similarly for ξ, it is a normal distribution:

π(ξ|YT , Θ−ξ, ZT ) ∼ N(ξT , σ2
T )I{ξ>0}

where

ξT =

∑T
t=2

(st−ρst−1)[yt−ρyt−1−(1−ρ)λ]
σ2(vt)

+ ξ0X
∑T

t=2(st − ρst−1)2/σ2(vt) + X

and

σ2
ξT =

1
∑T

t=2(st − ρst−1)2/σ2(vt) + X
.

For the precision of θ, the conditional distribution is truncated gamma:

π(θ|YT , Θ−θ, ZT ) ∼ Gamma(aθ
t , b

θ
t )I{θ>δ>0}

where aθ
t = aθ

0 + n0

2 and

bθ
t = bθ

0 +
ΣJ0

[yj − µ(sj) − ρ(yj−1 − µ(sj−1))]
2

2

where J0 is the set of v’s that equal zero {t|vt = 0, t = 1, . . . , n} and n0 the
number of elements in J0 (n0 = n− n1). In other words, n0 is the number
of states in which the variance is low (v = 0) in the sample.

Similarly, for the precision of η, the posterior conditional distribution is
also truncated gamma:

π(η|YT , Θ−η, ZT ) ∼ Gamma(aη
t , bη

t )I{η>δ>0}, provided that η < θ a.s.

where aη
t = aη

0 + n1

2 ,

bη
t = bη

0 +
ΣJ1

[yj − µ(sj) − ρ(yj−1 − µ(sj−1))]
2

2

and where J1 is the set of v’s that equal one {t|vt = 1, t = 1, . . . , n} and n1

is the number of elements in J1 (n1 = Σn
t=1vt). That is, n1 is the number

of states in which the variance is high (v = 1) in the sample.
For the transition probabilities in the Markov processes that govern the

latent states, the conditional distributions are beta:

π(p|YT , Θ−p, ZT ) ∼ Beta(n01 + u01, n00 + u00)
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where n01 = ΣT
t=1(1−st−1)st and n00 = ΣT

t=1(1−st−1)(1−st). That is, n10

is the number of transitions that occur from st−1 = 0 to st = 1, and n00 is
the number of transitions that occur from st−1 = 0 to st = 0. Similarly,

π(q|YT , Θ−q, ZT ) ∼ Beta(n10 + u10, n11 + u11)

where n10 = ΣT
t=1st−1(1 − st) and n11 = Σn

t=1st−1st.
Finally, the transition probabilities for the variance given all data, states

and parameters are:

π(pv|YT , Θ−pv
, ZT ) ∼ Beta(nv01 + v01, nv00 + v00)

where nv01 = ΣT
t=1(1 − vt−1)vt and nv00 = Σn

t=1(1 − vt−1)(1 − vt). And

π(qv|YT , Θ−qv
, ZT ) ∼ Beta(nv10 + v10, nv11 + v11)

where nv10 = ΣT
t=1vt−1(1 − vt) and nv11 = Σn

t=1vt−1vt.
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