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This article digresses over the interaction of uncertainty with the firm’s
optimal decisions in a simple framework: a standard price-taking (short-run
restricted) single-input and output unit, subject to the interaction with a zero-
mean Bernoulli lottery of variable dispersion.

The firm is always considered an expected profit-maximizing entity. We
inspect the consequences of exogenous uncertainty on the optimal allocations
and on its “mean-(and)variance” valuation position. On the one hand, we
contrast the effect of different sources of uncertainty on the producer’s problem
— input and output prices and quantities. On the other, we analyse the impact
of ex-post flexibility of the decision variables.

Importance and role of measures of risk-aversion (of concavity and con-
vexity) imbedded in the firms technology — either the production, marginal
productivity or the cost function, — and potentially risk-enhancing or deter-
rent features of the latter in the transmission of exogenous uncertainty to the
optimal profits’ mean and volatility under the different scenarios are high-
lighted.
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1. INTRODUCTION

The foundations of the theory of uncertainty are centred in the role
of consumers’ preferences and behaviour. Risk-aversion measures, in the
Arrow (1965) and Pratt (1964) sense1, have wide recognition in the in-

1Prudence, Kimball (1990). Temperance, Gollier and Pratt (1996) .
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formation literature2. The impact of exogenous dispersion on producers’
decisions is less unified. It is the purpose of this research to provide gen-
eral conclusions in this field, confronting different scenarios for the source
of uncertainty, and also for the reaction ability of the decision-maker.

The positive effect of (input3 as output4) price dispersion on expected
profits with ex- post flexibility is well-known in the literature. Technically,
it is a consequence of the convexity of the profit function in output and
input prices5. Effects of such uncertainty on expected profits stem stan-
dardly from comparable measures and indicators, usually oriented towards
expected utility — of background uncertainty in other prices can be inferred
from other literature6. More revealing is an ex-ante decision commitment
scenario7 — that if combined in some literature8, has not been directly con-
trasted with it. This comparison is particularly important, once it gives the
value the firm attributes to early information — or to flexibility9. Legally,
it connects with the expected minimum deterrent penalty against contract
default. Moreover, if we extend the analysis to wage rates, effects — and/or
reverse causes — of the rise in its dispersion observed in the last decade
may come forward. On another angle, we can see the firm accomplishing
some volatility itself towards the output price through quantity discount
or more or less regular product promotion policies.

Technology uncertainty has also been staged10; one can consider its con-
sequences as similar to those of random input quality — as price uncertainty
can simulate random output quality settings, of unplanned better (worse)
product that can (must) be sold at a higher (lower) price. The effect of
labour quality dispersion would belong to statistical discrimination11 —
generating (or not) an explanation for the employer’s preference for lower
quality dispersion (even if with the same mean) of the group hired, imply-
ing a higher equilibrium wage for its members. However, a link between
both effects is not generally found. And importance of risk-aversion mea-
sures for factor demand or output supply response in the (either) context
rarely disentangled.

2See Gollier (2001) for a recent survey on the theory of uncertainty. Also, Laffont
(1989), Karni and Schmeidler (1991), Hirshleifer and Riley (1992).

3Rothemberg and Smith (1971).
4Oi (1961).
5See Varian (1992) for references. It is indifferent whether the price argument affects

positively or negatively the objective function — see Martins (2004), for example, for
the definition of the premium to a risk added to variable but defined in anothers metric.

6See Martins (2004), for example.
7Sandmo (1971), relying on a cost function approach only. Batra and Ullah (1974),

Ha rtman (1975). These authors contemplated price uncertainty.
8Rothemberg and Smith (1971), Hartman (1976).
9Of course, the concept would also apply to consumer theory.
10See Feldstein (1971), for example.
11See Phelps (1972).
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Aiginger (1987) contains the most thorough survey of producer’s theory
under uncertainty that we know of12. He identifies benchmark results ob-
tained by different authors for several market organization scenarios (com-
petition/monopoly), distinguishing types of uncertainty (price/quantity;
additive/multiplicative), firms reaction ability (ex-ante/ex-post), and in-
spected effects (prices/factors/output; in general, expected profits). It was
our purpose to simulate the addition of a zero-mean randomness to each
of the firm’s decision terms and infer and contrast the effect of increasing
its dispersion simultaneously on all the relevant economic aggregates under
the different assumptions. We restricted ourselves to a competitive envi-
ronment and a single-output, single-input firm. Unlike the usual literature,
we highlight the hiring (factor demand) and production technology — even
if the complementary conditions for cost functions are also cited.

We assume that firms maximize expected profits13, and — in line with
a mean-variance14 behaviour of investors -, refer the transmission of the
exogenous uncertainty to the variance of the optimal profits, a feature
usually neglected in standard theory.

We stage a simple random environment: a Bernoulli lottery — two states
of nature — with zero mean added, linearly or proportionately, to a relevant
aggregate. The inspection of the impact of a rise in the spread between
the two possible outcomes has generated the same consequences for the
interpretation of risk-aversion measures as those revealed by general prob-
ability distributions in more complex scenarios than usual15. Moreover, we
wanted to replicate the usefulness of these indicators as reflecting the role
of concavity and convexity on the producer’s side. And indeed we were
able to.

The exposition proceeds as follows: in section 2, we advance general
notation and highlight some properties of the uncertainty environments
simulated in the text. Section 3, considers the impact of quantity and/or
quality uncertainty. Section 4 explores the opportunities opened to the firm
by ex-post flexibility in quantity decisions. Section 5 generates conclusions
for a firm that faces price dispersion. Some considerations on the effects of
(also) randomly affected control variables are advanced in section 6. The
exposition ends with some concluding remarks.

12Drèze (1987) also approaches the subject, but relying on a cost function approach
only. He focuses on demand uncertainty and concludes on the relation between the
equilibrium number and size of competitive firms in the market and uncertainty.

13That is, we will always assume “von Neumann-Morgenstern” profits.
14See Tobin (1958), for example.
15See Martins (2004), for example.
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2. NOTATION: RANDOMNESS EXPOSURE AND THE
FIRM

We admit a firm that maximizes profits, facing output (q) price P and
hiring labor L at unit cost w. It has a production function q = f(L),
continuous, increasing, concave and differentiable to several orders in L. It
enjoys a cost function C(q) continuous, increasing, convex and differentiable
to several orders in q. If only L is adjustable — in the short-run —,
C(q) = wf−1(q)+F , where f−1(q) denotes the inverse production function
and F fixed costs.

We consider a lottery that with probability r generates the reward s
and with probability (1− r) the loss s′, having null expected value — i.e.,
rs− (1− r)s′ = 0; then s′ = rs

1−r . Diagrammatically:

considers the impact of quantity and/or quality uncertainty. Section 3 explores the opportunities 
opened to the firm by ex-post flexibility in quantity decisions. Section 4 generates conclusions for 
a firm that faces price dispersion. Some considerations on the effects of (also) randomly affected 
control variables are advanced in section 5. The exposition ends with some concluding remarks. 

1. Notation: Randomness Exposure and the Firm

. We admit a firm that maximizes profits, facing output (q) price P and hiring labor L at 

unit cost w. It has a production function q = f(L), continuous, increasing, concave and 
differentiable to several orders in L. It enjoys a cost function C(q) continuous, increasing, convex 
and differentiable to several orders in q. If only L is adjustable – in the short-run -, C(q) = w f-
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(for given r) if positive, the higher the variance of the lottery – although its expected value 
remains zero: the more distant will the two possible outcomes be from each other; if negative, the 
larger s (that is, the less negative), the smaller the variance, that is, the uncertainty represented by 
the lottery – the closest will the two possible outcomes be. Then, we can represent an increase in 
uncertainty by a rise in s if s > 0, a decrease in s if s < 0. We shall analyse the effects of additive 
uncertainty on a given variable over other parameters by inspecting how these react to s when we 

16
add the lottery X to the former variable in accordance with those principles . 

16
 Such simulation with s reproduces Rothschild and Stiglitz (1970) notion of “mean-preserving spreads”. 

5

The lottery will have variance V ar(X) = rs2 + (1− r)
(
− rs

1−r

)2

= rs2

1−r .
The larger s (for given r) if positive, the higher the variance of the lottery
— although its expected value remains zero: the more distant will the two
possible outcomes be from each other; if negative, the larger s (that is, the
less negative), the smaller the variance, that is, the uncertainty represented
by the lottery — the closest will the two possible outcomes be. Then, we
can represent an increase in uncertainty by a rise in s if s > 0, a decrease
in s if s < 0. We shall analyse the effects of additive uncertainty on a
given variable over other parameters by inspecting how these react to s
when we add the lottery X to the former variable in accordance with those
principles16.

Yet, for given s, V ar(X) also increases with r. But r is a parameter that
we would rather inspect if we wanted to study asymmetry, in particular 3rd
centered moments. It is easy to show that E{(XCE[X])3} = r(1−2r)s3

(1−r)2 =
(1−2r)s

1−r V ar(X). One can show that E{(XCE[X])3} decreases (increases)

16Such simulation with s reproduces Rothschild and Stiglitz (1970) notion of “mean-
preserving spreads”.
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with r iff r > (<) 1
3 -hence, around 1

2 . Skewness of the distribution of X in-
creases if some measure related to and with the sign of E{(XCE[X])3} (say,
the measure of asymmetry E{(XCE[X])3}/V ar(X)3/2) becomes more pos-
itive when r < 1

2 , more negative when r > 1
2 .

The lottery will never be symmetric nor E{(XCE[X])3} independent of
V ar(X) unless r = 1

2 : we could, therefore, specify results for this special
case. Nevertheless, our sign results 2 revealed themselves as invariant to r.

In some contexts, the addition of a “proportional” lottery may be more
appropriate — generating multiplicative uncertainty relative to a deter-
ministic variable Z. Then, it is as if Z is added of the lottery Y = ZX:

 6
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before. Measures of relative risk-aversion will have relevance in this context – see Appendix 1 
for the confrontation of the risk-premium for additive and multiplicative lotteries.  
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required. We will experiment briefly with the addition of this randomness and term it factored or 
unitary uncertainty – see in Appendix 1 the relation between the risk-premium for such a lottery 
and properties of the consumer’s utility function. 
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Its variance will be r(
√

Zs)2 + (1 − r)
(
−
√

Z rs
1−r

)2

= Z rs2

1−r and pro-
portional to Z as required. We will experiment briefly with the addition
of this randomness and term it factored or unitary uncertainty — see in
Appendix A the relation between the risk-premium for such a lottery and
properties of the consumer’s utility function.

3. QUANTITY/QUALITY UNCERTAINTY UNDER
COMMITMENT

3.1. Factor Uncertainty
1) Additive Uncertainty
Admit ex-ante uncertainty — non-observed dispersion - with respect to

labor quality, or in the technical efficiency with which it is used, in such a
way that the output obtained with L labor units is f(L+s) with probability
r and f(L − rs

1−r ) with probability (1 − r). The firm hires L — pays its
unitary cost w — but it can either get f(L + s) as f(L − rs

1−r ) of output
with it. The firm maximizes:

max
L

Eπ(L) = rPf(L + s) + (1Cr)Pf(L− rs

1− r
)− wL (1)

The F.O.C. requires that the optimal hiring will be L∗ such that the
expected value of the value of the marginal product of labour equals the
wage rate:

rPf ′(L∗ + s) + (1Cr)Pf ′(L∗ − rs

1− r
) = w (2)

We can infer the effect of an increase in uncertainty over the optimal
L∗ = L(P,W, s, r) simulating a variation in s:

rPf ′′(L∗ + s)(dL∗ + ds) + (1Cr)Pf ′′(L∗ − rs

1− r
)(dL∗ − r

1− r
ds) = 0

Then:

dL∗

ds
= r

f ′′(L∗ − rs
1−r )− f ′′(L∗ + s)

rf ′′(L∗ + s) + (1− r)f ′′(L∗ − rs
1−r )

(3)

For S.O.C. to be observed, the denominator must be negative (which will
be satisfied if f ′′(.) < 0).

Being s > 0, an increase in s performs an increase in uncertainty. It will
generate a:

-rise in L∗ (and in costs) iff dL∗

ds > 0, which requires f ′′(L∗ − rs
1−r ) <

f ′′(L∗ + s). This will hold iff f ′′(.) rises with the argument, that is, if
f ′′′(.) > 0 — or the marginal product of labor, f ′(.), (the inverse firm’s
labor demand under certainty; as the direct labor demand, as the function
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has only one argument and is negatively sloped) is convex. That will be
the case of constant-elasticity demand functions, for example.

-decrease in L∗ iff dL∗

ds < 0, requiring f ′′(L∗− rs
1−r ) > f ′′(L∗ + s). Then,

f ′′′(.) < 0 — the marginal productivity of labor, f ′(.) (firm’s labor demand
or its inverse) is concave.

Being s < 0, a rise uncertainty correspond to a decrease in s. It implies:
-a rise in L∗ iff dL∗

ds < 0, requiring f ′′(L∗ − rs
1−r ) > f ′′(L∗ + s). As s is

negative, that will occur iff f ′′′(.) > 0 — that is, if f ′(.) is convex.
-a decrease in L∗ iff dL∗

ds > 0, requiring f ′′(L∗ − rs
1−r ) < f ′′(L∗ + s),

compatible with f ′′′(.) < 0 — marginal productivity, f ′(.) concave.
Therefore, in any case, a rise in uncertainty will decrease firm (employ-

ment) size if the (short-run) labor demand is concave, it will rise it if it is
convex. The intuition is simple if one contrasts the setting with another
without uncertainty: the firm equates the expected value of marginal prod-
uct of labor to the wage. Being the value of marginal product a concave
function, its expected value is smaller than the value of the expected ar-
gument (of L∗ + X, which is always L∗); being the marginal product a
negative function of the argument, to insure a given fixed expected value
of marginal product w#, L∗, the expected value of the argument under
uncertainty, must be lower than the certain quality L# chosen. Graphi-
cally — Fig. 1 —, L∗ is chosen such that the line that connects the points
[L1, Pf(L1)] and [L2, Pf(L2)], where L1 = L∗ − rs

1−r and L2 = L∗ + s,
intersects w# at the horizontal axis value L∗; of course, such line is below
Pf ′(L) if this is concave; hence L#, the demand for certain quality hired
at wage w#, read on Pf ′(L), must be to the right of L∗: uncertainty in
quality decreases employment.

 9

f’(L) if this is concave; hence L#, the demand for certain quality hired at wage w#, read on P 
f’(L), must be to the right of L*: uncertainty in quality decreases employment. 
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If f ′(L) is convex, we infer the opposite effect.
One can visualize the expansion of the numerator of (3) to the first order

as −f ′′′(L∗)(s + rs
1−r ). Then, dL∗

ds approximates (s + rs
1−r ) times − f ′′′(L∗)

f ′′(L∗) :
dL∗

ds would be directly proportional to absolute prudence17 imbedded on the
production function - the absolute risk-aversion measure of the marginal
product function (Yet, as f ′(L) is negatively sloped, one could sustain that
risk aversion embedded in the function f ′(L) would more appropriately be
measured by plus f ′′′(L)

f ′′(L) : a higher premium in the metric of and added
to L will be borne by a maximizer of f ′(L) to avoid randomness in L
— see Appendix A). We recover, thus, an application of Kimball’s (1990)
statements — absolute prudence captures the “sensitivity of the optimal
choice of a decision variable to risk”.

We can also conclude that optimal expected output, E[q∗] = rf(L∗ +
s) + (1Cr)f(L∗ − rs

1−r ), reacts to s according to:

dE[q∗]
ds

=[rf ′(L∗ + s) + (1Cr)f ′(L∗ − rs

1− r
)]

dL∗

ds
+ r[f ′(L∗ + s)− f ′(L∗ − rs

1− r
)]

=
w

P

dL∗

ds
+ r[f ′(L∗ + s)− f ′(L∗ − rs

1− r
)]

If s > 0, as f ′′(L) < 0, the last term is negative; even if dL∗

ds > 0, E[q∗]
may decrease with uncertainty. Developing the first expression, we arrive
at:

dE[q∗]
ds

= r
f ′(L∗ + s)f ′′(L ∗ − rs

1−r )− f ′(L∗ − rs
1−r )f ′′(L∗ + s)

rf ′′(L∗ + s) + (1− r)f ′′(L∗ − rs
1−r )

(4)

Being s > 0, dE[q∗]
ds < 0 and E[q∗] decreases with uncertainty iff− f ′′(L∗+s)

f ′(L∗+s) >

− f ′′(L∗− sr
1−r )

f ′(L∗− sr
1−r ) . That is, if the Arrow-Pratt measure of absolute risk-aversion

(measuring the concavity) of the production function, f(L) (which is in-
creasing in L: f ′(L) > 0), r(L) = − f ′′(L)

f ′(L) , is increasing in the argument. q∗

increases with uncertainty iff − f ′′(L)
f ′(L) is decreasing in L — this is the case of

(concave) constant elasticity production functions (in fact, Cobb-Douglas
technologies).

For s < 0, the last term is positive: even if dL∗

ds < 0 (L∗ rises with
uncertainty), dq∗

ds may be positive — and a rise in uncertainty (a fall of

17Defined by Kimball (1990). Its importance is recognized in intertemporal contexts
of consumer decisionmaking — see Carroll and Kimball (1996) for a recent example.
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s) have a negative impact of output’s expected value. dE[q∗]
ds > 0 and q∗

decreases with uncertainty iff − f ′′(L∗+s)
f ′(L∗+s) < − f ′′(L∗− sr

1−r )

f ′(L∗− sr
1−r ) ; as now s < 0,

we still require the Arrow-Pratt measure of risk aversion of the production
function, z(L) = − f ′′(L)

f ′(L) , to be increasing with the argument.
A further qualification — and an intuition — for the assertion can be

made by the development of the meaning of increasing and decreasing risk-
aversion. Risk aversion embedded in f(L) will increase with the argument,
L, iff:

−f ′′(L)
f ′(L)

> −f ′′′(L)
f ′′(L)

(5)

if absolute risk aversion is larger than absolute prudence; that is, if the
production function is more concave than the marginal product function
is (once f ′′(L) < 0) convex. The effect of uncertainty on E[q∗] would
be a composition of two effects: an indirect effect determining the effect
of uncertainty, X, on L∗, working through — as we saw above — the
convexity of f ′(.), and a direct additive effect of uncertainty around L on
q, both compounded through the concavity of f(.). If f ′(.) is concave, L∗

decreases with uncertainty — the more negative f ′′′(L) is - suggesting a
decrease in q∗; then the indirect affect counteracts (and powers) the direct
one more intensely the more concave the production function is.

The measure of absolute risk-aversion also corresponds to the symmet-
ric of the semi-elasticity of the marginal product function. We can re-

write dE[q∗]
ds as approximately proportional to −f ′(L∗)

d[− f′′(L∗)
f′(L∗)

]

dL∗

− f′′(L∗)
f′(L∗)

, that is,

to the symmetric of the semi-elasticity of the absolute risk-aversion mea-
sure with respect to the argument times the marginal product function. Or
to f ′(L∗){− f ′′′(L∗)

f ′′(L∗) [− f ′′(L∗)
f ′(L∗) ]}: the difference between prudence and risk-

aversion of the production function, factored by the marginal product; that
is, to the difference of the semi-elasticities of the marginal product and of
f ′′(L∗), factored by the value of marginal product.

With respect to the optimal expected profits:

dE[π∗]
ds

= P{rf ′(L∗ + s) + (1− r)f ′(L∗ − rs

1− r
)]

dL∗

ds

+ r[f ′(L∗ + s)− f ′(L∗ − rd

1− r
)]} − w

dL∗

ds
(6)

= Pr[f ′(L∗ + s)− f ′(L∗ − rs

1− r
)]

Once f(.) is concave, f ′′(.) < 0, optimal expected profits decrease with
uncertainty: dE[π∗]

ds < 0 if s > 0; dE[π∗]
ds > 0 if s < 0.
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Expanding (1.6) by Taylor’s series around L∗:

dE[π∗]
ds

= Pr{(s +
rs

1− r
)f ′′(L∗) + [1−

(
r

1− r

)2

]
s2

2
f ′′′(L∗) + · · · }

We conclude that expected profits sensitivity to the outside turbulence
will be higher ( dE[π∗]

ds will be smaller — more negative — for s > 0),
the higher the output price P on the one hand, and the more distant
f ′(L∗ + s) and f ′(L∗ − rs

1−r ) are on the other; the latter is compatible
with a more negative f ′′(L) — a more concave production function, more
negatively sloped marginal product function, less negatively “sloped” firm’s
(short run) demand for the factor. And/or a smaller size (a smaller L∗)
if the marginal product function is convex and f ′′(L) rises (becomes less
negative) with the argument — if L∗ rises with uncertainty; a larger size
if the marginal product function is concave, that is, L∗ decreases with
uncertainty.

One can infer that the variance of profits:

V ar(π∗)

= rP 2[f(L∗ + s)− rf(L∗ + s)− (1− r)f(L∗ − rs

1− r
)]2

+ (1− r)P 2[f(L∗ − rs

1− r
)− rf(L∗ + s)− (1− r)f(L∗ − rs

1− r
)]2

= P 2(1− r)r[f(L∗ + s)− f(L∗ − rs

1− r
)]2

= P 2(1− r)r{(s +
rs

1− r
)f ′(L∗) + [1−

(
r

1− r

)2

]
s2

2
f ′′(L∗) + · · · }2 (7)

dV ar[π∗]
ds

= 2P 2(1− r)r[f(L∗ + s)− f(L∗ − rs

1− r
)]

· {[f ′(L∗ + s)− f ′(L∗ − rs

1− r
)]

dL∗

ds
+ [f ′(L∗ + s) +

r

1− r
f ′(L∗ − rs

1− r
)]}

= 2P 2r[f(L∗ + s)− f(L∗ − rs

1− r
)]

·
(1− r)f ′(L∗ + s)f ′′(L∗ − rs

1−r ) + rf ′(L∗ − rs
1−r )f ′′(L∗ + s)

rf ′′(L∗ + s) + (1− r)f ′′(L∗ − rs
1−r )

(8)

For s > 0, dV ar[π∗]
ds > 0 and dV ar[π∗]

ds < 0 if s < 0: the variance of profits
always rises with uncertainty.

Inspection of the two last expressions suggests that outside turbulence
will imply higher profit volatility the higher the marginal product — ul-
timately, the higher the wage rate, and in a proportional relation to its
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square. Possibly, it is not so sensitive to the output price in the context: as
the expected marginal productivity is equated to w

P , P 2 tends to cut with
the effect of this denominator.

(In Appendix B we develop some considerations about the effect of out-
side uncertainty on the expected value and variance of a function the ar-
gument of which is added of a generic random variable. We note, however,
that the context here differs: we are inspecting the optimal profits after
internalizing the effect of uncertainty on the control variables themselves.
The peculiarities of our distribution, potentially asymmetric, may also be
important for the effects on the variance.)

One concludes that the trade-off between V ar(π∗) and E[π∗] is always
negative and varies according to:

dV ar[π∗]
dE[π∗]

= 2P
f(L∗ + s)− f(L∗ − rs

1−r )
f ′(L∗ + s)− f ′(L∗ − rs

1−r )

·
(1− r)f ′(L∗ + s)f ′′(L∗ − rs

1−r ) + rf ′(L∗ − rs
1−r )f ′′(L∗ + s)

rf ′′(L∗ + s) + (1− r)f ′′(L∗ − rs
1−r )

< 0 (9)

By accepting higher uncertainty in factor quality the firm cannot improve
its expected profit position.

Finally, it is straightforward to show that the variability of supply is

V ar(q∗) = (1− r)r[f(L∗ + s)− f(L∗ − rs

1− r
)]2 (10)

and powered by the level of the marginal product function, that is, of the
wage price ratio w

P , squared.

Proposition 1. Consider a standard price-taking, expected profit maxi-
mizing firm subject to ex-ante commitment in hiring decisions and additive
uncertainty in input quality. After a rise in such uncertainty, the firm’s:

1.labor demand decreases (increases) if the marginal product function is
concave(convex) in the argument.

2.expected output or supply decreases (increases) if concavity of the pro-
duction function is more (less) pronounced than the convexity of the marginal
product one as measured by the Arrow-Pratt measure of absolute risk aver-
sion. Equivalently, if this measure for the production function rises (de-
creases) with the argument, the factor.

3.expected profits decrease — more pronouncedly, the higher the output
price and the more concave is the production function. Their volatility
increases — more intensely, the higher the (square of the) wage rate.
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4.variance of output supply increases, more intensely, the higher the
(square of the) marginal product or wage-price ratio.

2) Multiplicative Uncertainty
Multiplicative uncertainty has similar qualitative effects. Suppose the n

that the firm suffers a multiplicative impact of the lottery X relative to the
labor force it hires, that is the X is a proportional deviation of efficient-units
that a given L employed generates, and hence, the production function is
really f(L + LX) = f [L(1 + X)]. The firms problem becomes:

max
L

Eπ(L) = rPf [L(1 + s)] + (1− r)Pf [L(1− rs

1− r
)]− wL (11)

F.O.C. requires still require that the expected value of the value of the
marginal product of labour equals the wage rate:

rPf ′[L∗(1 + s)](1 + s) + (1− r)Pf ′[L∗(1− rs

1− r
)](1− rs

1− r
) = w (12)

Then:

dL∗

ds
= (13)

r
f ′[L∗(1− rs

1−r
)] + f ′′[L∗(1− rs

1−r
)]L∗(1− rs

1−r
)− f ′[L∗(1 + s)]− f ′′[L∗(1 + s)]L∗(1 + s)

rf ′′[L∗(1 + s)](1 + s)2 + (1− r)f ′′[L∗(1− rs
1−r

)](1− rs
1−r

)2

The denominator is negative by S.O.C. L∗ will decrease with uncertainty
iff g(L) = f ′(L) + Lf ′′(L) is decreasing in L. That is to say, if G(L) =
Lf ′(L), the marginal product times the factor, is a concave function. Or
that 2f ′′(L) + Lf ′′′(L) < 0 and — once f ′′(L) < 0 — the Arrow-Pratt
measure of relative risk aversion of the marginal product function f ′(L),
−Lf ′′′(L)

f ′′(L) (again, we note that, once f ′′(L) < 0, relative risk-aversion of

f ′(L) could be inferred by plus f ′′′(L)L
f”(L) ) is smaller than 2:

−Lf ′′′(L)
f ′′(L)

< 2 (14)

This will be the case for constant-elasticity — Cobb-Douglas type-production
functions.
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Expected supply reacts to s according to:

dE[q∗]
ds

= {rf ′[L∗(1 + s)](1 + s) + (1− r)f ′[L∗(1− rs

1− r
)](1− rs

1− r
)}dL∗

ds

+ rL∗{f ′[L∗(1 + s)]− f ′[L∗(1− rs

1− r
)]} (15)

=
w

P

dL∗

ds
+ rL∗{f ′[L∗(1 + s)]− f ′[L∗(1− rs

1− r
)]}

=
r

rf ′′[L∗(1 + s)](1 + s)2 + (1− r)f ′′[L∗(1− rs
1−r )](1− rs

1−r )2

· {f ′[L∗(1 + s)]f ′′[L∗(1− rs

1− r
)]L∗(1− rs

1− r
)

− f ′[L∗(1− rs

1− r
)]f ′′[L∗(1 + s)]L∗(1 + s)

− w

P
(f ′[L∗(1 + s)]− f ′[L∗(1− rs

1− r
)])} (16)

That is, dE[q∗]
ds > 0 for s > 0 and q∗ will increase with uncertainty iff

w
P − f ′′[L∗(1− sr

1−r )]L∗(1− sr
1−r )

f ′[L∗(1− sr
1−r )]

>
w
P − f ′′[L∗(1 + s)]L∗(1 + s)

f ′[L∗(1 + s)]

that is
w
P −f ′′(L)L

f ′(L) is decreasing with L. It will decrease with uncertainty

if
w
P −f ′′(L)L

f ′(L) is increasing with L. Note that near the optimal solution,
w
P = E[f ′(L + X)] and close to f ′(L). Then,

w
P −f ′′(L)L

f ′(L) reacts to L in that
neighbourhood as the measure of relative risk aversion (of relative concav-
ity) of the production function, − f ′′(L)L

f ′(L) does (this measure is constant
for constant-elasticity — Cobb-Douglas type - production functions, for
example). One can develop the concept of increasing relative risk aversion
easily: − f ′′(L)L

f ′(L) will increase with L iff:

−f ′′′(L)L
f ′′(L)

− [−f ′′(L)L
f ′(L)

] < 1 (17)

That is, if relative prudence — the relative risk aversion measure of the
marginal product function — minus relative risk aversion is smaller than
1.
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As for expected profits:

dE[π∗]
ds

= PrL∗{f ′[L∗(1 + s)]− f ′[L∗(1− rs

1− r
)]} (18)

= PrL∗{(s +
rs

1− r
)L∗f ′′(L∗) + [1−

(
r

1− r

)2

]
(L∗s)2

2
f ′′′(L∗) + · · · }

They always decrease with uncertainty. Expanding the variance of the
optimal profits:

V ar(π∗)

= P 2(1− r)r{f [L∗(1 + s)]− f [L∗(1− rs

1− r
)]}2 (19)

= P 2(1− r)r{(s +
rs

1− r
)L∗f ′(L∗) + [1−

(
r

1− r

)2

]
(L∗s)2

2
f ′′(L∗) + · · · }2

For s > 0, we expect that dV ar[π∗]
ds > 0 and dV ar[π∗]

ds < 0 if s < 0:
the variance of profits rises with uncertainty. The variance of profits will
be enhanced by the (square of) PL∗f ′(L∗) — the higher Pf ′(L∗), that
approaches the wage, times L∗, employment. That is, by the wage bill
size.

The variability of supply will equal:

V ar(q∗) = (1− r)r{f [L∗(1 + s)]− f [L∗(1− rs

1− r
)]}2 (20)

We can conclude that:

Proposition 2. Consider a standard price-taking, expected profit max-
imizing firm subject to ex-ante commitment in hiring decisions and multi-
plicative uncertainty in input quality. After a rise in such uncertainty, the
firm’s:

1.labor demand decreases (increases) if the “factored” marginal product
function — the marginal product function times the factor — is concave
(convex) in the argument. That is, if the Arrow-Pratt measure of relative
risk aversion of the marginal product function is smaller (larger) than 2.

2.expected output or supply decreases (increases) if the Arrow-Pratt mea-
sure of relative risk aversion for the production function rises (decreases)
with the argument, the factor. That is if the difference between the Arrow-
Pratt measures of relative risk aversion of the marginal product and of the
production functions is smaller (larger) than 1.
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3.expected profits decrease — more pronouncedly, the higher the output
price, the (square of) factor demand, and the more negatively sloped is the
“factored” marginal product function, the marginal product function times
the factor. Their volatility increases — more int ensely, the higher the
(square of the) wage bill.

4.variance of output supply increases, more intensely, the higher the
(square of the) “factored” marginal product function, the marginal prod-
uct function times the factor, or wage bill-price ratio.

3) “Factored” Uncertainty
Suppose that the variance of the input increases linearly with the amount

hired:
√

LX is added to L at the production function argument level. The
firm maximizes:

max
L

Eπ(L) = rPf(L +
√

Ls + (1− r)Pf(L−
√

L
rs

1− r
)− wL (21)

F.O.C. requires still require that the expected value of the value of the
marginal product of labour equals the wage rate:

rPf ′(L∗+
√

L∗s)(1+
1

2
√

L∗
s)+(1−r)Pf ′(L∗−

√
L∗ rs

1− r
)(1− 1

2
√

L∗

rs

1− r
) = w

The sign of dL∗

ds is equal to the derivative of the left hand-side with respect
to s — once the derivative with respect to L∗, the denominator, is negative
by S.O.C. dL∗

ds has the sign of:

1
2
√

L∗
rP{f ′(L∗ +

√
L∗s) + f ′′(L∗ +

√
L∗s)(2L∗ +

√
L∗s)

− f ′(L∗ −
√

L∗
rs

1− r
)− f ′′(L∗ −

√
L∗

rs

1− r
)(2L∗ −

√
L∗

rs

1− r
)}(22)

It will be negative for s > 0 and L∗ decreases with uncertainty if, approx-
imately, 1

2
√

L
[f ′(L) + 2Lf ′′(L)] decreases with L; that is, if the function

G(L) =
√

Lf(L) is concave. L∗ increases with uncertainty if G(L) =√
Lf ′(L) is convex.
One can make the correspondence of a concave G(L) =

√
Lf ′(L) to the

condition, involving relative risk-aversion and relative prudence:

−Lf ′′(L)
f ′(L)

[−Lf ′′′(L)
f ′′(L)

− 1] <
1
4

(23)
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Expected profits will react according to:

dE[π∗]
ds

= Pr
√

L∗[f ′(L∗ +
√

L∗s)− f ′(L∗ −
√

L∗
rs

1− r
)]

= Pr
√

L∗{(s +
rs

1− r
)
√

L∗f ′′(L∗) (24)

+[1−
(

r

1− r

)2

]
L∗s2

2
f ′′′(L∗) + · · · }

They always decrease with uncertainty. The variance becomes:

V ar(π∗) = P 2(1− r)r[f(L∗ +
√

L∗s)− f(L∗ −
√

L∗
rs

1− r
)]2

= P 2(1− r)r{(s +
rs

1− r
)
√

L∗f ′(L∗) (25)

+[1−
(

r

1− r

)2

]
L∗s2

2
f ′′(L∗) + · · · }2

V ar(q∗) = (1− r)r[f(L∗ +
√

L∗s)− f(L∗ −
√

L∗
rs

1− r
)]2 (26)

The rooting of L with have a correspondence in the assertions made for
multiplicative uncertainty.

3.2. Output Uncertainty
1) Additive Uncertainty
Suppose that uncertainty — lottery X — is not directly added to labour

quality but to financial efficiency in factor hiring processing in such a way
that the cost associated to a production level q, which the firm controls,
is C(q + X), that is, C(q + s) with probability r and C(q − rs

1−r ) with
probability 1− r. Then the firm will try to:

max
q

Eπ(q) = Pq − rC(q + s)− (1Cr)C(q − rs

1− r
) (27)

F.O C. requires that the price equals expected marginal cost:

P = rC ′(q∗ + s) + (1− r)C ′(q∗ − rs

1− r
) (28)

The effect of a change in s on the optimal decision q∗ can be inferred from:

rC ′′(q∗ + s)(dq∗ + ds) + (1− r)C ′′(q∗ − rs

1− r
)(dq∗ − r

1− r
ds) = 0

Then:

dq∗

ds
= r

C ′′(q∗ − rs
1−r )− C ′′(q∗ + s)

rC ′′(q∗ + s) + (1− r)C ′′(q∗ − rs
1−r )

(29)
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C ′′(.) > 0 — the denominator is positive (for S.O.C. to be obeyed). Being
s > 0, a rise in uncertainty generates:

-an increase in q∗ iff dq∗

ds > 0, which requires that C ′′(q− rs
1−r ) > C ′′(q +

s). That will occur if C ′′′(.) < 0 — that is, marginal cost, C ′(.) (the
firm’s inverse supply under certainty) is concave (hence, the direct supply,
positively sloped, convex).

-a decrease in q∗ iff dq∗

ds < 0, which requires C ′′(q − rs
1−r ) < C ′′(q + s).

That occurs C ′′′(.) > 0 — that is, marginal cost, C ′(.) (the firm’s inverse
supply under certainty) is convex (the firm’s supply is concave).

Being s < 0, we will have a symmetric effect of s. We therefore conclude
that: a rise in uncertainty decreases the target-output if the inverse supply
is convex, it raises it if it is concave. The widely used quadratic cost
function will generate invariability of q∗ to such uncertainty.

An intuition can also be given for the condition found. Being the marginal
cost function a convex function, its expected value is larger than the value of
the expected argument (of q∗ +X, which is always q∗); being the marginal
product a positive function of the argument, to insure a given fixed ex-
pected marginal cost P#, q∗, the expected value of the argument under
uncertainty, must be lower than the certain quality q# chosen. Graphi-
cally — Fig. 2 -, q∗ is chosen such that the line that connects [q1, C

′(q1)]
and [q2, C

′(q2)], where q1 = q∗ − rs
1−r and q2 = q∗ + s, intersects P# at

the horizontal axis value q∗; of course, such line is above C ′(q) if this is
convex; hence q#, the output chosen under certainty at price P#, read
on C ′(q), must be to the right of q∗: uncertainty in quality decreased the
target output.

 19
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With a concave marginal cost function, we would arrive at the opposite
conclusion.

We can visualize dq∗

ds as directly proportional to the measure of prudence
of the cost function, i.e., to −C′′′(q∗)

C′′(q∗) .
Expected costs react according to:

dE[C(q∗)]
ds

= [rC ′(q∗ + s) + (1− r)C ′(q∗ − rs

1− r
)]

dq∗

ds

+ r[C ′(q∗ + s)− C ′(q∗ − rs

1− r
)]

= P
dq∗

ds
+ r[C ′(q∗ + s)− C ′(q∗ − rs

1− r
)]

For s > 0, the last term is positive, once marginal cost is increasing with
the argument: even if dq∗

ds < 0, costs may rise with uncertainty. Developing
the second expression we can derive that:

dE[C(q∗)]
ds

= r
C ′(q∗ + s)C ′′(q∗ − rs

1−r )− C ′(q∗ − rs
1−r )C ′′(q∗ + s)

rC ′′(q∗ + s) + (1− r)C ′′(q∗ − rs
1−r )

(30)

For s > 0, it will be positive iff C′′(q∗+s)
C′(q∗+s) <

C′′(q∗− sr
1−r )

C′(q∗− sr
1−r ) : minimum ex-

pected cost rises with uncertainty if the degree of absolute convexity of the
cost function C(q) (increasing in q : C ′(q) > 0), b(q) = C′′(q)

C′(q) , is decreas-
ing in the argument. That is a property, for example, of the conventional
quadratic cost function.

The convexity of C(q) as measured by C′′(q)
C′(q) will decrease with the ar-

gument iff:

C ′′(q)
C ′(q)

>
C ′′′(q)
C ′′(q)

(31)

If the absolute convexity of the cost function is larger than that of the
marginal cost function, expected costs rise with uncertainty. The effect of
uncertainty on E[C∗] would be a composition of two effects: an indirect
effect determining the effect of uncertainty, X, on q∗, working through — as
we saw above — the convexity of C ′(.), and an direct effect of uncertainty
around q on C, working through the convexity of C(.). If C ′(.) is convex, q∗

decreases with uncertainty suggesting a decrease in C; then, the direct effect
counteracts the other more intensely the more convex the cost function is.

We can visualize dE[C(q∗)]
ds as approximately proportional to−C ′(q∗)

d

»
C′′′(q∗)
C′(q∗)

–
dq∗

C′′(q∗)
C′(q∗)

,

that is, to the symmetric of the semi-elasticity of the absolute “convexity”
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measure with respect to the argument times the marginal cost function.
Or to −C ′(q∗)[C′′′(q∗)

C′′(q∗) −
C′′(q∗)
C′(q∗) ]

We could still deduct that:

dE[π∗]
ds

= r[C ′(q∗ − rs

1− r
)− C ′(q∗ + s)] (32)

= −r{(s +
rs

1− r
)C ′′(q∗) + [1−

(
r

1− r

)2

]
s2

2
C ′′′(q∗) + · · · }

C(.) is convex — by S.O.C.; then, for s > 0, dπ∗

ds < 0 and for s < 0,
dπ∗

ds > 0. Again, the optimal expected profits decrease with uncertainty.
For s > 0, dE[π∗]

ds will be larger in absolute value, the larger is C ′′(q∗) —
the more convex the cost function is, the higher the slope of (the steeper)
the firm’s inverse supply, lower the “slope” of the firm’s (short run) supply.
And/or a larger size (q∗) if the marginal cost function is convex and C ′′(q)
rises with the argument — if q∗ decreases with uncertainty; a smaller size if
the marginal cost function is convex, that is, q∗ increases with uncertainty.

V ar(π∗) = r[C(q∗ + s)− rC(q∗ + s)− (1− r)C(q∗ − rs

1− r
)]2

+ (1− r)[C(q∗ − rs

1− r
)− rC(q∗ + s)− (1− r)C(q∗ − rs

1− r
)]2

= (1− r)r[C(q∗ + s)− C(q∗ − rs

1− r
)]2 (33)

= (1− r)r{(s +
rs

1− r
)C ′(q∗) + [1−

(
r

1− r

)2

]
s2

2
C ′′(q∗) + · · · }2

dV ar[π∗]
ds

= 2(1− r)r[C(q∗ + s)− C(q∗ − rs

1− r
)]

· {[C ′(q∗ + s)− C ′(q∗ − rs

1− r
)]

dq∗

ds

+ [C ′(q∗ + s) +
r

1− r
C ′(q∗ − rs

1− r
)]}

= 2[C(q∗ + s)− C(q∗ − rs

1− r
)] (34)

·
(1− r)C ′(q∗ + s)C ′′(q∗ − rs

1−r ) + rC ′(q∗ − rs
1−r )C ′′(q∗ + s)

rC ′′(q∗ + s) + (1− r)C ′′(q∗ − rs
1−r )

If s > 0, dV ar[π∗]
ds > 0; s < 0, dV ar[π∗]

ds < 0 — instability in the optimal
profits always rises with uncertainty.

Inspection of the two last expressions suggests that exogenous uncer-
tainty in output will imply higher profit volatility the higher the marginal
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cost — ultimately, the higher the output price, and in a proportional rela-
tion to its square.

One concludes that the trade-off between V ar(π∗) and E[π∗] is always
negative and varies according to:

dV ar[π∗]
dE[π∗]

= 2
C(q∗ + s)− C(q∗ − rs

1−r )
C ′(q∗ − rs

1−r )− C ′(q∗ + s)
(35)

·
(1− r)C ′′(q∗ + s)C ′′(q∗ − rs

1−r ) + rC ′(q∗ − rs
1−r )C ′′(q∗ + s)

rC ′′(q∗ + s) + (1− r)C ′′(q∗ − rs
1−r )

< 0

V ar[C∗] replicates the optimal profits variance.

Proposition 3. Consider a standard price-taking, expected profit max-
imizing firm subject to ex-ante targeting decision context with respect to
output and additive uncertainty around the cost function argument. After
a rise in such uncertainty, the firm’s:

1.output supply decreases (increases) if the marginal cost function is con-
vex (concave) in the argument.

2.expected costs decrease (increase) if convexity of the cost function is less
(more) pronounced than that of the marginal cost one as measured by the
symmetric measure to the Arrow-Pratt measure of absolute risk aversion.
Equivalently, if this measure for the cost function rises (decreases) with the
argument, the output.

3.expected profits decrease — more intensely the more convex is the cost
function - and their volatility increases — more intensely the larger (the
square of) marginal cost and (the square of) output price.

We note that the slope of an inverse function has the same sign as the
slope of the original one. The sign of the convexity of an inverse function
coincides with that of the direct one if negatively sloped, it is symmetric if
positively sloped. On the other hand, in our simple single-input scenario,
C(q) = wf−1(q) + F ; if we ignore fixed costs and normalize price to 1,
we recover in C(q) the inverse production function and marginal cost is
one over the marginal product. Hence, the conditions for quantity effects
on the convexity of C(q) or C ′(q) in Proposition 3 have correspondence to
those on the concavity of the f(L) in Proposition 1 (except for those based
on results scaled by second derivatives).

2) Multiplicative Uncertainty
Suppose the uncertainty is multiplicative: with probability r the argu-

ment of the cost function is added of qs, with probability (1−r) subtracted
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of q rs
1−r . The firm will try to:

max
q

Eπ(q) = Pq − rC[q(1 + s)]− (1− r)C[q(1− rs

1− r
)] (36)

F.O C. requires that the price equals expected marginal cost:

P = rC ′[q(1 + s)](1 + s) + (1− r)C ′[q(1− rs

1− r
)](1− rs

1− r
) (37)

The effect of a change in s on the optimal decision q∗ is :

dq∗

ds
= (38)

r
C′[q∗(1− rs

1−r
)] + C′′[q∗(1− rs

1−r
)]q∗(1− rs

1−r
)− C′[q∗(1 + s)]− C′′[q∗(1 + s)]q∗(1 + s)

rC′′[q∗(1 + s)](1 + s)2 + (1− r)C′′[q∗(1− rs
1−r

)](1− rs
1−r

)2

The denominator is positive by S.O.C. q∗ will increase with uncertainty
iff g(q) = C ′(q) + qC ′′(q) is decreasing in q. That is to say, if G(q) =
qC ′(q), the marginal cost times the output, is a concave function. Or that
2C ′′(q) + qC ′′′(q) < 0 and — once C ′′(q) > 0 — the symmetric of the
Arrow-Pratt measure of relative risk aversion of the marginal cost function
C ′(q), qC′′′(q)

C′′(q) is smaller than minus 2:

qC ′′′(q)
C ′′(q)

< −2 (39)

q∗ will decrease with uncertainty iff g(q) = C ′(q) + qC ′′(q) is increasing in
q or G(q) = qC ′(q) is convex in q. This will be the case for a quadratic
cost function.

Expected cost reacts to s according to:

dE[C∗]
ds

=
r

rC ′′[q∗(1 + s)](1 + s)2 + (1− r)C ′′[q∗(1− rs
1−r )](1− rs

1−r )2

· {C ′[q∗(1 + s)]C ′′[q∗(1− rs

1− r
)]q∗(1− rs

1− r
)

− C ′[q∗(1− rs

1− r
)]C ′′[q∗(1 + s)]q∗(1 + s)

− P (C ′[q∗(1 + s)]− C ′[q∗(1− rs

1− r
)])} (40)

That is, dE[C∗]
ds > 0 for s > 0 and E[C∗] will increase with uncertainty iff

C ′′[q∗(1− sr
1−r )]q∗(1− sr

1−r )− P

C ′[q∗(1− sr
1−r )]

>
C ′′[q∗(1 + s)]q∗(1 + s)− P

C ′[q∗(1 + s)]
,
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that is, if C′′(q)−P
C′(q) is decreasing with q. E[C∗] will decrease with uncer-

tainty if C′′(q)q−P
C′(q) is increasing with q. Note that near the optimal solution,

P = E[C ′(q + X)] and close to C ′(q). Then, C′′(q)q−P
C′(q) reacts to q in that

neighbourhood as the measure of relative convexity of the production func-
tion, C′′(q)q

C′(q) does. One can develop the concept of relative convexity: C′′(q)q
C′(q)

will increase with q iff:

C ′′(q)q
C ′(q)

− C ′′′(q)q
C ′′(q)

< 1 (41)

That is, relative convexity of the cost function minus relative convexity of
the marginal cost function - is smaller than 1.

As for expected profits:

dE[π∗]
ds

= rq∗{C ′[q∗(1− rs

1− r
)]− C ′[q∗(1 + s)]} (42)

= −rq∗{(s +
rs

1− r
)q∗C ′′(q∗) + [1−

(
r

1− r

)2

]
(q∗s)2

2
C ′′′(q∗) + · · · }

They always decrease with uncertainty.

V ar(π∗)

= (1− r)r{C[q∗(1 + s)]− C[q∗(1− rs

1− r
)]}2 (43)

= (1− r)r{(s +
rs

1− r
)q∗C ′(q∗) + [1−

(
r

1− r

)
]
(q∗s)2

2
C ′′(q∗) + · · · }2

Proposition 4. Consider a standard price-taking, expected profit max-
imizing firm subject to ex-ante targeting decision context with respect to
output and multiplicative uncertainty around the cost function argument.
After a rise in such uncertainty, the firm’s:

1.output supply decreases (increases) if the “factored” marginal cost func-
tion — the marginal cost function times the output -is convex (concave) in
the argument. That is, if the symmetric of the Arrow-Pratt measure of
relative risk aversion of the marginal cost function is larger (smaller) than
minus 2.

2.expected costs decrease (increase) if the symmetric of the measure of
relative risk aversion for the cost function rises (decreases) with the argu-
ment, the factor. That is, if the difference between the relative convexity of
the cost and of the marginal cost functions is smaller (larger) than 1.



UNINSURABLE RISKS 363

3.expected profits decrease — more pronouncedly, the higher the (square
of) output supply, and the more positively sloped is the marginal cost func-
tion, the inverse supply function. Their volatility increases — more in-
tensely, the higher the (square of the) total revenue.

4. QUANTITY/QUALITY UNCERTAINTY AND EX-POST
FLEXIBILITY

4.1. Factor Uncertainty
1) Additive Uncertainty
Admit floating quality: with probability r, production reacts as if ben-

efiting of the addition s to the input; with probability (1 − r), as if it has
been deducted of rs

1−r .
If the firm has ex-post decision ability — it can easily adjust employment

either by new hires as by dismissals -, it is going to hire L1 when it observes
s such that:

max
L1

Pf(L + s)CwL (44)

Pf ′(L1 + s) = w; then
dL1

ds
= −1 (45)

When it faces − rs
1−r , it will hire L2 such that:

max
L2

Pf(L− rs

1− r
)− wL (46)

Pf ′(L2 −
rs

1− r
) = w; then

dL2

ds
=

r

1− r
(47)

Let L# be such that

Pf ′(L#) = w (48)

The firm always insures the productivity — and the production q∗ = f(L#)
-associated to such L#; therefore, L1 = L# − s and L2 = L# + rs

1−r . The
expected value of the firm’s demand E[L∗] = rL1 + (1 − r)L2 = L# and
will not react to uncertainty. We will have that:

dE[L∗]
ds

=
dE[q∗]

ds
=

dE[π∗]
ds

= 0 (49)
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However, uncertainty affects (in the same direction) the variability of labor
demand and of the firm’s profits:

V ar[p∗] = (−W )2V ar(L∗) = W 2[r(L1 − L#)2 + (1− r)(L2 − L#)2]

= W 2[r(−s)2 + (1− r)(
rs

1− r
)2] = W 2V ar(X) (50)

We conclude that with this type of uncertainty and ex-post decisions, we
arrive at identical solutions in terms of expected value as those of a context
without uncertainty (in which it is irrelevant if decisions are ex-ante or ex-
post . . . ). Let s > 0. With ex-ante decisions we concluded that:

dE[L∗]
ds > 0 for s > 0 iff f ′′′(L) > 0 — that is, marginal productivity,

f ′(.), is convex. Then, the firm that decides ex-post (of “lower” s — in
fact, of s = 0) has lower expected labor demand than that of the enterprise
that decides ex-ante. Se f ′′′(L) < 0, we conclude the opposite.

dE[q∗]
ds < 0 iff the Arrow-Pratt’s measure of absolute risk-aversion of the

production function f(L), r(L) = − f ′′(L)
f ′(L) , is increasing in the argument. In

this case, the firm that decides ex-post (of “lower” s) has higher expected
output supply than the one that decides ex-ante. If − f ′′(L)

f ′(L) is decreasing
in L, we have the opposite conclusion.

dE[π∗]
ds < 0. Then if decisions are ex-post, expected profits are always

higher than if decisions are taken ex-ante.
(If s < 0, signs change but the conclusions with respect to the sign effect

of an increase in uncertainty.)

Proposition 5. Consider a standard price-taking, expected profit max-
imizing firm with ex-post flexibility towards hiring decisions and additive
uncertainty in input quality. The firm’s

1.expected employment, output and profits are invariant to quality un-
certainty. Profit and employment (labor demand) variability will rise with
such uncertainty, the profits being enhanced by the (square of the) wage
level.

2.expected profits will be higher than for a firm restricted by ex-ante com-
mitment.

3.expected labor demand will be higher (lower) than that of the ex-ante
deciding firm under the conditions of 1. of Proposition 1.

4.expected output supply will be higher (lower) than that of the ex-ante
deciding firm under the conditions of 2. of Proposition 1.

2) Multiplicative Uncertainty
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Admit the multiplicative uncertainty case and ex-post flexibility. Then
with probability r the firm solves:

max
L1

Pf [L(1 + s)]CwL (51)

Pf ′[L1(1 + s)](1 + s) = w (52)

then dL1
ds = − f ′[L1(1+s)]+L1(1+s)f ′′[L1(1+s)]

(1+s)2f ′′[L1(1+s)]

When it faces − rs
1−r , it will hire L2 such that:

max
L2

Pf [L(1− rs

1− r
)]CwL (53)

Pf ′[L2(1−
rs

1− r
)](1− rs

1− r
) = w (54)

then
dL2

ds
=

r

1− r

f ′[L2(1− rs
1−r )] + L2(1− rs

1−r )f ′′[L2(1− rs
1−r )]

(1− rs
1−r )2f ′′[L2(1− rs

1−r )]

dE[L∗]
ds

= r
dL1

ds
+ (1− r)

dL2

ds
= r (55)

· {
f ′[L2(1− rs

1−r )] + L2(1− rs
1−r )f ′′[L2(1− rs

1−r )]
(1− rs

(1−r )2f ′′[L2(1− rs
1−r )]

− f ′[L1(1 + s)] + L1(1 + s)f ′′[L1(1 + s)]
(1 + s)2f ′′[L1(1 + s)]

As L1(1 + s) > L2(1 − rs
1−r ) for s > 0, it is possible (around s = 0) that

dE[L∗]
ds is larger or smaller than 0 under analogous conditions — see (13)

-of the ex-ante scenario. The math became much more cumbersome and
to circumvent the problem we rearranged the assumptions:

Admit that (multiplicative) uncertainty affects production but also sur-
rounds the costs — see section 5. Then, multiplicative uncertainty would
not altered the conclusions with respect to expectations of optimal param-
eters — and would compare with multiplicative uncertainty with ex- ante
commitment according to the same principles. Now, target or planned
employment will have variance:

V ar[L∗] = L#2V ar(X) (56)

The profit’s volatility will vanish: V ar[p∗] = 0.

Proposition 6. Consider a standard price-taking, expected profit maxi-
mizing firm with ex-post flexibility towards hiring decisions and multiplica-
tive uncertainty in input quality for which the firm must necessarily pay
for. The firm’s
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1.expected employment, output and profits are invariant to quality uncer-
tainty. Target employment (labor demand) variability will rise with such
uncertainty; the profit’s will vanish.

2.expected profits will be higher than for a firm restricted by ex-ante com-
mitment.

3.expected labor demand will be higher (lower) than that of the ex-ante
deciding firm under the conditions of 1. of Proposition 2.

4.expected output supply will be higher (lower) than that of the ex-ante
deciding firm under the conditions of 2. of Proposition 2.

4.2. Output Uncertainty
1) Additive Uncertainty
Consider the case where we analyzing additive uncertainty at the cost

function argument level. If the firm has ex-post decision ability — it can
easily adjust output -, it is going to chose q1 when it observes s such that:

max
q1

Pq − C(q + s) (57)

P = C/(q1 + s); then
dq1

ds
= −1 (58)

When it faces − rs
1−r , it will target q2 such that:

max
q2

Pq − C(q − rs

1− r
) (59)

P = C ′(q2 −
rs

1− r
); then

dq2

ds
=

r

1− r
(60)

Let q# be such that

P = C ′(q#) (61)

The firm always insures the marginal cost — and the minimum cost C∗ =
C(q#) - associated to such q#; therefore, q1 = q# − s and q2 = q# + rs

1−r .
The expected value of the firm’s supply E[q∗] = rq1 + (1 − r)q2 = q# and
will not react to uncertainty. We will have that:

dE[C∗]
ds

=
dE[q∗]

ds
=

dE[π∗]
ds

= 0 (62)

However, uncertainty affects (in the same direction) the variability of
output supply and of the firm’s profits — the latter proportionately to the
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square of the output price level:

V ar[p∗] = P 2V ar(q∗) = P 2[r(q1 − q#)2 + (1− r)(q2 − q#)2]

= P 2[r(−s)2 + (1− r)(
rs

1− r
)2] = P 2V ar(X∗) (63)

We conclude that with this type of uncertainty and ex-post decisions, we
arrive at identical solutions in terms of expected value as those of a context
without uncertainty (in which it is irrelevant if decisions are ex-ante or ex-
post . . .). Let s > 0. With ex-ante decisions we concluded that:

q∗ rises with uncertainty ( dq∗

ds > 0 for s > 0, dq∗

ds < 0 for s < 0) if
C ′′′(.) < 0 — that is, marginal cost, C ′(.) is concave; Then, the firm that
decides ex-post (of “lower” s — in fact, of an equivalent case to s = 0) has
lower expected supply than that of the enterprise that decides ex-ante. If
C ′′′(L) > 0 and C ′(.) is convex, we conclude the opposite.

E[C∗] rise with uncertainty (dE[C∗]
ds > 0 iff s > 0; dE[C∗]

ds < 0 iff s < 0), if
the measure of absolute convexity of the cost function C(q), r(q) = C′′(q)

C′(q) ,
is decreasing in the argument. In this case, the firm that decides ex-post
(of “lower” s) has lower expected costs than the one that decides ex-ante.
If C′′(q)

C′(q) is increasing in q, we have the opposite conclusion.
dE[π∗]

ds < 0 if s > 0; dE[π∗]
ds > 0 if s < 0 and profits decrease with

uncertainty. Then, if decisions are ex-post, expected profits are always
higher than if decisions are taken ex-ante.

In this context:

V ar(q∗) = V ar(X) (64)

Supply totally cushions exogenous quantity fluctuations, and has the same
variance as X.

Proposition 7. Consider a standard price-taking, expected profit max-
imizing firm with ex-post flexibility towards output decisions and additive
uncertainty around the cost function argument. The firm’s

1.expected output, costs and profits are invariant to such uncertainty.
Profit and output (supply) variability will rise with it — supply in a one to
one relation; the profit’s being enhanced by the (square of the) output price
level.

2.expected profits will be higher than for a firm restricted by ex-ante com-
mitment.

3.expected output supply will be higher (lower) than that of the ex-ante
deciding firm under the conditions of 1. of Proposition 3.

4.expected total costs will be higher (lower) than that of the ex-ante de-
ciding firm under the conditions of 2. of Proposition 3.
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2) Multiplicative Uncertainty
Under multiplicative uncertainty, such that for output level q costs can

either be C[q(1 + s)], which occurs with probability r, or C[q(1 − rs
1−r )],

with probability (1− r), admitting that unplanned costs in fact generated
output that can be sold in the market — see section 5 -, one can easily
show that the q# that solves the additive uncertainty case −P = C ′(q#)
-is recovered, q1 = q#(1− s) and q2 = q#(1 + rs

1−r ). Still:

dE[C∗]
ds

=
dE[q∗]

ds
=

dE[π∗]
ds

= 0 (65)

However, uncertainty affects (in the same direction) the variability of target
output supply, even if corrected ex-post:

V ar(q∗) = [r(q1 − q#)2 + (1− r)(q2 − q#)2] = q#2V ar(X) (66)

Profits’ variability is driven down to zero.

Proposition 8. Consider a standard price-taking, expected profit maxi-
mizing firm with ex-post flexibility towards output decisions and multiplica-
tive uncertainty around the cost function argument, which can, neverthe-
less, be sold in the market. The firm’s

1.expected output, costs and profits are invariant to such uncertainty.
Target supply variability will rise with it — supply, enhanced by (the square
of the) output size. The profit’s variability will disappear.

2.expected profits will be higher than for a firm restricted by ex-ante com-
mitment.

3.expected output supply will be higher (lower) than that of the ex-ante
deciding firm under the conditions of 1. of Proposition 4.

4.expected total costs will be higher (lower) than that of the ex-ante de-
ciding firm under the conditions of 2. of Proposition 4.

5. PRICE UNCERTAINTY
5.1. Wage Rate Dispersion

1) “Additive” Uncertainty
Admit wage fluctuations, with the Bernoulli behaviour: with probability

r the wage rate is added of s; with probability (1 − r), deducted of rs
1−r .

If a decision must be taken ex-ante, uncertainty in the wage has no effects
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on the optimal quantities or expected values; it is straight-forward to infer
that, in this case:

V ar[p∗] = L∗
2
V ar(X) (67)

profits become more unstable with wage uncertainty, factored by the square
of optimal employment — hence, possibly attenuated by the wage level
(once demands are negatively sloped).

Proposition 9. Consider a standard price-taking, expected profit maxi-
mizing firm with ex-ante commitment towards hiring decisions and additive
uncertainty in the wage rate.

1.The firm’s expected employment, output and profits are invariant to
price uncertainty.

2.Profit variability will rise with such uncertainty, being enhanced by the
(square of the) employment level.

If the firm has ex-post decision ability — it can easily adjust employment
-, it will hire L1 when it observes W + s such that:

max
L1

Pf(L)− (w + s)L (68)

Pf ′(L1) = w + s; then
dL1

ds
=

1
Pf ′′(L1)

(69)

It will hire L2, when it faces w − rs
1−r such that:

max
L2

Pf(L)− (w − rs

1− r
)L (70)

Pf ′(L2) = w − rs

1− r
; then

dL2

ds
= − 1

Pf ′′(L2)
r

1− r
(71)

Then, L1 = LD(w+s
P ) and L2 = LD(

w− rs
1−r

P ), where LD(w
P ) denotes the

firm’s (optimal) labor demand as a function of the observed wage divided
by output price, corresponding to the inverse marginal product function
evaluated at w

P .
Let s > 0.
As f ′′(L) < 0, L2 > L1. With probability r, the firm will employ L1,

with (1− r), L2. The expected value of demand E[L∗] = rL1 + (1− r)L2,
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reacts to s according to:

dE[L∗]
ds

= r
dL1

ds
+ (1− r)

dL2

ds
=

r

P
[

1
f ′′(L1)

− 1
f ′′(L2)

]

=
r

Pf ′′(L1)f ′′(L2)
[f ′′(L2)− f ′′(L1)] (72)

If f ′′(L) is increasing in L, that is, if the marginal product function, f ′(L),
is convex (f ′′′(L) > 0), E[L∗] increases with uncertainty — and is higher
for a firm that can react ex-post than for the one that decides ex-ante (for
an equivalent s = 0, necessarily smaller). Being concave, E[L∗] decreases
with uncertainty — and is lower for a firm that responds ex-post.

As for output:

dE[q∗]
ds

= rf ′(L1)
dL1

ds
+ (1− r)f ′(L2)

dL2

ds

=
r

P
[
f ′(L1)
f ′′(L1)

− f ′(L2)
f ′′(L2)

] (73)

=
rf ′(L1)f ′(L2

Pf ′′(L1)f ′′(L2)
[
f ′′(L2)
f ′(L2)

− f ′′(L1)
f ′(L1)

]

If absolute risk-aversion , − f ′′(L)
f ′(L) , is increasing in L, as L2 > L1(s > 0),

dE[q∗]
ds < 0 and expected output decreases with uncertainty — and is lower

for the firm that can react ex-post. Being decreasing with L, dE[q∗]
ds > 0 —

and E[q∗] is higher for the firm reacting ex-post.

dE[π∗]
ds

= r[Pf ′(L1)− (w + s)]
dL1

ds
+ (1− r)[Pf ′(L2)− (w − rs

1− r
)]

dL2

ds

−rL1 + (1− r)
r

1− r
L2

= r(L2 − L1)

= r[LD(
w − rs

1−r

P
)− LD(

w + s

P
)] (74)

= −r{
s + rs

1−r

P
LD′

(
w

P
) + [1−

(
r

1− r

)2

]
s2

2P 2
LD′′

(
w

P
) + · · · }

For s > 0, dE[π∗]
ds > 0: anticipated wage dispersion favours expected prof-

its — and ex-post decisions are profitable compared to ex-ante employment
commitment. dE[π∗]

ds will be larger, the more negatively sloped is the firm’s
factor demand — and the less negatively sloped is the inverse factor de-
mand (the value of marginal product function) and, thus, the less concave
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is the firm’s production function. (This conclusion would be conformable
with the standard properties of an optimal profit function18 — the benefits
from uncertainty around the wage more profit-enhancing the more convex
the profit function is with respect to it; or the higher its second partial
derivative with respect to the wage, with correspondence to the symmetric
of the slope of 19 the derived factor demand function19.)

However, we can show that profits become more unstable with uncer-
tainty:

V ar[p∗]

= (1− r)r{[Pf(L1)− (w + s)L1]− [Pf(L2)− (w − rs

1− r
)L2]}2 (75)

= (1− r)r{
s + rs

1−r

P
LD(

w

P
) + [1−

(
r

1− r

)2

]
s2

2P 2
LD′

(
w

P
) + · · · }2

Then:

dV ar[π∗]
ds

= 2(1− r)r{[Pf(L1)− (w + s)L1] (76)

−[Pf(L2)− (w − rs

1− r
)L2]}{−L1 −

r

1− r
L2}

dV ar[π∗]
ds > 0 if s > 0; dV ar[π∗]

ds < 0 if s < 0. Exogenous uncertainty
will imply higher profit volatility the higher the firm’s labor demand, in a
proportional relation to its square — ultimately, the lower the wage rate.

Then, by varying s, we register the always positive trade-off:

dV ar[π∗]
dE[π∗]

= 2{[Pf(L2)− (w − rs

1− r
)L2] (77)

−[Pf(L1)− (w + s)L1]}
(1− r)L1 + rL2

L2 − L1
> 0

The variance of factor demand, of course, rises with uncertainty -more
pronouncedly the more negatively sloped labor demand is:

V ar(L∗) = r(1− r)(L1 − L2)2 (78)

That of supply will also rise with uncertainty - more intensely the more
negatively sloped labor demand is and the larger marginal product; pos-
sibly higher, the lower the (square of the) measure of risk-aversion of the

18A consequence of Hotelling’s lemma. See Varian (1992), for example.
19In fact, this correspondence is also apparent in the expression (3.9) below; we also

refer the reader to formula (A.1) in Appendix 1 for the analog of (3.8), and to the first
term of (B.1) in Appendix 2 for the recognition of similarities to (3.9).
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production function:

V ar(q∗) = r(1− r)[f(L1)− f(L2)]2 (79)

Proposition 10. Consider a standard price-taking, expected profit max-
imizing firm with ex-post flexibility towards hiring decisions and additive
uncertainty in the wage rate. After a rise in such uncertainty, the firm’s:

1.expected labor demand decreases (increases) if the marginal product
function is concave (convex) in the argument — in which case is lower
(higher) for the firm with ex-post flexibility.

2.expected output or supply decreases (increases) if concavity of the pro-
duction function is more (less) pronounced than the convexity of the marginal
product one as measured by the Arrow-Pratt measure of absolute risk aver-
sion — in which case is lower (higher) for the firm with ex-post flexibility.
Equivalently, if this measure for the production function rises (decreases)
with the argument, the factor.

3.expected profits increase — more strongly, the less concave is the pro-
duction function - and their volatility also — enhanced by employment size
and deterred by the wage rate. Expected profits are higher for the firm with
ex-post reaction ability.

2) “Factored” Uncertainty
One may suggest that the additive uncertainty in prices considered has

really a multiplicative effect on total costs. Let us suppose uncertainty
is such that the lottery added to total costs is of the type w

√
LX and

no longer linear in L. If a decision must be taken ex-ante, uncertainty in
the wage has no effects on the optimal quantities or expected values; it is
straight-forward to infer that, in this case:

V ar[p∗] = L∗V ar(X). (80)

If the firm has ex-post decision ability — it can easily adjust employment
-, it will hire L1 when it observes W + s such that:

max
L1

Pf(L)− w(L + s
√

L) (81)

Pf ′(L1) = w + s
1

2
√

L1

; (82)
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then

dL1

ds
=

√
L1

P [2L1f ′′(L1) + f ′(L1)]− w

=
2L1

4PL
3
2
1 f ′′(L1) + s

=
1

2P
√

L1f ′′(L1) + 1
2L1

s

It will hire L2 when it faces w − rs
1−r such that:

max
L2

Pf(L)− w(L− rs

1− r

√
L) (83)

Pf ′(L2) = w − rs

1− r

1
2
√

L2

; (84)

then

dL2

ds
= −

√
L2

P [2L2f ′′(L2) + f ′(L2)]− w

r

1− r

= − 2L2

4PL
3
2
2 f ′′(L2)− rs

1−r

r

1− r
= − 1

2P
√

L2f ′′(L2)− 1
2L2

rs
1−r

r

1− r

Let s > 0.
As f ′′(L) < 0, L2 > L1. With probability r, it will hire L1, with (1− r),

L2. The expected value of demand E[L∗] = rL1 + (1 − r)L2, reacts to s
according to:

dE[L∗]
ds

= r
dL1

ds
+ (1Cr)

dL2

ds
(85)

=
r

P
[

√
L1

2L1f ′′(L1) + f ′(L1)− w
P

−
√

L2

2L2f ′′(L2) + f ′(L2)− w
P

]

If 2Lf ′′(L)+f ′(L)−w
P√

L
is increasing in L, that is, approximately, if the func-

tion,
√

Lf ′′(L), is increasing in L — if −
√

Lf ′′(L), plain concavity of f(L)
factored by

√
L, is decreasing in L -, E[L∗] increases with uncertainty —

and is higher for a firm that can react ex-post than for the one that decides
ex-ante (for an equivalent s = 0, necessarily smaller). Being decreasing,
E[L∗] decreases with uncertainty — and is lower for a firm that responds
ex-post.

Expected profits react to s according to:

dE[π∗]
ds

= rw(
√

L2 −
√

L1) (86)
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V ar[p∗] = (1Cr)r{[Pf(L1)−(wL1+s
√

L1)]−[Pf(L2)−(wL2+
rs

1− r

√
L2)]}2

(87)
Then:

dV ar[π∗]
ds

= 2(1Cr)r{[Pf(L1)− (wL1 + s
√

L1)] (88)

− [Pf(L2)− (wL2 +
rs

1− r

√
L2)]}{−

√
L1 −

r

1− r

√
L2}

Uncertainty in the output price generates mostly the same conclusions
as uncertainty in the wage does. We will therefore not repeat the exercise
and rather perform it below for a firm with a given cost function.

5.2. Output Price Uncertainty
Admit now output price fluctuation: with probability r the price P is

added of s; with probability (1 − r), deducted of rs
1−r . If a decision must

be taken ex-ante, uncertainty in the output price has no effects on the
optimal quantities or expected values; it is straight-forward to infer that,
in this case:

V ar[p∗] = q∗
2
V ar(X) (89)

profits become more unstable with price uncertainty, factored by the square
of optimal output.

Proposition 11. Consider a standard price-taking, expected profit max-
imizing firm with ex-ante commitment towards hiring decisions and additive
uncertainty in the output price.

1.The firm’s expected employment, output and profits are invariant to
price uncertainty.

2.Profit variability will rise with such uncertainty, being enhanced by the
(square of the) output size.

If the firm has ex-post decision ability — it can easily adjust output -,
it will produce q1 when it observes P + s such that:

max
q1

(P + s)q − C(q) (90)

P + s = C ′(q1); then
dq1

ds
=

1
C ′′(q1)

(91)
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It will target q2 when it faces P − rs
1−r such that:

max
q2

(P − rs

1− r
)q − C(q) (92)

P − rs

1− r
= C ′(q2); then

dq2

ds
= − 1

C ′′(q2)
r

1− r
(93)

Denote qS(P ) the inverse marginal cost function — the firm’s supply at
output price P . Then q1 = qS(P + s) and q2 = qS(P − rs

1−r ).
Let s > 0.
As C ′′(q) > 0, q1 > q2. With probability r, the firm will chose q1, with

(1− r), q2. The expected value of supply E[q∗] = rq1 + (1− r)q2, reacts to
s according to:

dE[q∗]
ds

= r
dq1

ds
+ (1− r)

dq2

ds
= r[

1
C ′′(q1)

− 1
C ′′(q2)

]

=
r

C ′′(q1)C ′′(q2)
[C ′′(q2)− C ′′(q1)] (94)

If C ′′(q) is increasing in q, that is, if the marginal cost function, C ′(q), is
convex (C ′′′(q) > 0), E[q∗] decreases with uncertainty — and is lower for
a firm that can react ex-post than for the one that decides ex-ante (for an
equivalent s = 0, necessarily smaller). Being concave, E[q∗] increases with
uncertainty — and is higher for a firm that responds ex-post.

As for expected costs:

dE[C∗]
ds

= rC ′(q1)
dq1

ds
+ (1− r)C ′(q2)

dq2

ds
= r[

C ′(q1)
C ′′(q1)

− C ′(q2)
C ′′(q2)

]

= r
C ′(q1)C ′(q2)

PC ′′(q1)C ′′(q2)
[
C ′′(q2)
C ′(q2)

− C ′′(q1)
C ′(q1)

] (95)

If absolute convexity of C(q), C′′(q)
C′(q) , is increasing in q, as q1 > q2 for

s > 0, dE[C∗]
ds < 0 and expected costs decrease with uncertainty — and

are lower for the firm that can react ex-post. Being decreasing with q,
dE[q∗]

ds > 0 — and are higher for the firm adjusting ex-post.

dE[π∗]
ds

= r[P + s− C ′(q1)]
dq1

ds
+ (1− r)[P − rs

1− r
− C ′(q2)]

dq2

ds

+ rq1 − (1− r)
r

1− r
q2 = r(q1 − q2) = r[qS(P + s)− qS(P − rs

1− r
)]

= r{(s +
rs

1− r
)qS′

(P ) + [1−
(

r

1− r

)2

]
s2

2
qS′′

(P ) + · · · } (96)
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For s > 0, dE[π∗]
ds > 0: anticipated output price volatility favours ex-

pected profits — and ex-post decisions are profitable compared to ex-
ante output targeting. dE[π∗]

ds will be larger, the higher the slope of the
firm’s output supply — the lower the slope of the firm’s inverse supply,
C ′′(q∗), and the less convex is the firm’s cost function. (This conclusion
would be conformable with the standard properties of an optimal profit
function20 — the benefits from uncertainty around the output price more
profit-enhancing the more convex the profit function is with respect to it;
or the higher its second partial derivative with respect to the price, with
correspondence to the slope of the output supply function21.)

However, we can show that profits become more unstable with uncer-
tainty:

V ar[p∗] = (1− r)r{[(P + s)q1 − C(q1)]− [(P − rs

1− r
)q2 − C(q2)]}2 (97)

= (1− r)r{(s +
rs

1− r
)qS(P ) + [1−

„
r

1− r

«2

]
s2

2
qS′(P ) + · · · }2

Then:

dV ar[π∗]
ds

= 2(1− r)r{[(P + s)q1 − C(q1)]

− [(P − rs

1− r
)q2 − C(q2)]}{q1 +

r

1− r
q2} (98)

dV ar[π∗]
ds > 0 if s > 0; dV ar[π∗]

ds < 0 if s < 0. dV ar[π∗]
ds > 0 if s > 0;

dV ar[π∗]
ds < 0 if s < 0. Exogenous uncertainty will imply higher profit

volatility the higher the firm’s output supply, in a proportional relation to
its square — ultimately, the higher the output price.

By varying s, we register the always positive trade-off:

dV ar[π∗]
dE[π∗]

= 2{[(P+s)q1−C(q1)]−[(P− rs

1− r
)q2−C(q2)]}

(1− r)q1 + rq2

q1 − q2
> 0

(99)
The variance of output will rise with uncertainty -more pronouncedly the
more positively sloped labor supply is:

V ar(q∗) = r(1− r)(q1 − q2)2 (100)

The variance of total costs also rises with uncertainty - more intensely the
more positively sloped labor supply is and the larger the marginal cost

20A consequence of Hotelling’s lemma. See Varian (1992), for example.
21In fact, this correspondence is also apparent in the expression (3.31) below; we also

refer the reader to formula (A.1) in Appendix 1 for the analog of (3.30), and to the first
term of (B.1) in Appendix 2 for the recognition of similarities to (3.31).
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at which the firm is operating; possibly higher, the lower the measure of
convexity (symmetric to risk-aversion) of the cost function:

V ar(C∗) = r(1− r)[C(q1)− C(q2)]2 (101)

Proposition 12. Consider a standard price-taking, expected profit max-
imizing firm with ex-post flexibility towards output decisions and additive
uncertainty in the output price. After a rise in such uncertainty, the firm’s:

1.expected output supply decreases (increases) if the marginal cost func-
tion is convex (concave) in the argument — in which case is lower (higher)
for the firm with ex-post flexibility.

2.expected costs decrease (increase) if convexity of the cost function is
less (more) pronounced than that of the marginal cost one as measured by
the symmetric measure to the Arrow-Pratt measure of absolute risk aver-
sion — in which case is lower (higher) for the firm with ex-post flexibility.
Equivalently, if this measure for the cost function rises (decreases) with the
argument, the output.

3.expected profits increase — more intensely the less convex is the cost
function - and their volatility as well — enhanced, as that of supply, by
output size and price. Expected profits are higher for the firm with ex-post
reaction ability.

6. DECISION UNCERTAINTY

In the models advanced we generally considered the addition of uncer-
tainty only at one of the relevant features of the firm profit function. It
is conceivable that firm’s decision targets may be affected by inadequate
transmission — due to organizational complexity, lack of authority, faulty
management, uncooperative resources.

Suppose decisions are surrounded by uncertainty X, so that even if the
decision process targets L(q), the effective employment (supply) is in fact
L + X(q + X). Then, the conclusions drawn for the expected values of
the several aggregates of the profit maximizing firms deciding ex-ante and
facing quantity uncertainty — of section 2 -would remain valid. However,
the variance of the optimal profits would be higher than found before.

Ex-post flexibility would allow to correct for all possible “mistakes” or
deviations. Then, the conclusions of section 3 would still hold for expected
values (under additive as multiplicative uncertainty if we restrict ourselves
for the latter to the cases of simultaneously random wage bill or revenues)
— remaining invariant to the dispersion -but, as expected, the variance
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of profitability would be driven down to zero. Simulation with additional
costs, increasing function of, say, s2, would provide an interesting source
of compensation mechanism to (for further) study.

7. CONCLUSION

A unified vision of the effects of exogenous randomnesses on the different
levels of the competitive firm’s economic activity is now possible:

1. Effects of a rise in uncertainty on expected factor demand and supply
(supply and costs) added to the input (output) under ex-ante commit-
ment are analogous to those of uncertainty added to its price in a con-
text of total flexibility. Such correspondence is useful, once the properties
of optimal profit functions are well-studied in producer’s theory — quan-
tity responses to simulation under any environment may be inferred more
straight-forwardly by staging the analogous conditions under which those
functions, of prices, can be used directly.

Those effects are conditional on the concavity or convexity features of the
firm’s technology — of marginal product and marginal cost -, and relations
with risk-aversion measures were invariably encountered.

2. In general, an increase in exogenous uncertainty increases profits
volatility.

3. An increase in exogenous uncertainty in quantities decreases expected
profits with ex-ante commitment but has no effects on expected values with
ex-post flexibility. An increase in exogenous uncertainty in prices has no ef-
fects on expected profits (or other variables) with ex-ante commitment but
increases expected profitability with ex-post flexibility. In this last decision
environment, it may (then) be possible for the firm to trade positions in
the mean-variance coordinates of profitability by exposure to the adequate
price diversification (or wage dispersion).

Of course, flexibility — a move towards ex-post adjustable decisions —
increases expected profits. But, it induces control variables’ fluctuations.

4. Concavity or convexity of production or cost function determine the
size of the impact of the outside turbulence on firm’s expected profits.
Under quantity uncertainty, the variability of profits would depend more
closely on the (usually the square of the) first derivative of the technology
elements (production or cost function) — that is, of marginal product or of
marginal cost at which the firm operates —, generally with correspondence
to a price; under price uncertainty, on the (square of the) size (quantity)
of a control variable. However — see Appendix 2 —, these last conclu-
sions may be less immune to a change in the distribution of the exogenous
randomness.

5. The simulation of multiplicative instead of additive uncertainty did
not alter qualitatively the conclusions (in ex-post quantity uncertainty, mild



UNINSURABLE RISKS 379

adjustments were considered to the assumptions, though, reproducing gen-
eral uncertainty in the decision variable). The role of absolute risk-aversion
measures was replaced by relative ones. Importance of “factored” marginal
product and marginal cost functions emerged in its presence. Proportion-
ality of results to prices or their squares found for additive scenarios was
frequently replaced by either revenues or costs.

APPENDIX A

Taylor’s expansion to the second order of any function F (.) around neigh-
bourhood X of a given level L generates

F (L + X) = F (L) + F ′(L)X +
F ′′(L)

2!
X2 + · · · (A.1)

Let X be a random variable added to L, being L independent of X’s
variability (but not of moments of X’s distribution, necessarily). Then:

E[F (L + X)] = F (L) + F ′(L)E[X] +
F ′′(L)

2
{V ar(X) + E[X]2} (A.2)

Admit a consumer with utility function derived from income F (.), with
F (.)′ > 0, being income L + X where L represents a deterministic part
and X a random variable with null expected value. The consumer is more
averse to income’s volatility the higher the amount m — the risk-premium
— that he is willing to pay to avoid the randomness X; that is, m such
that:

F (L−m) = E[F (L + X)]

Take Taylor’s expansion of F (L−m) around L but only to the first order
and equalize to that of the right hand-side — this to the second order —
for that lottery of null expected value:

F (L)− F ′(L)m = F (L) +
F ′′(L)

2
V ar(X)

Then: m = −F ′′(L)
F ′(L)

V ar(X)
2

The higher −F ′′(L)
F ′(L) , the Arrow-Pratt measure of absolute risk-aversion,

the larger the consumer’s sensitivity to risk, that is, to the variance of X
(as to that of total income, L + X).

Suppose we have a multiplicative lottery: X = LZ and E[Z] = 0. Then,
V ar(X) = L2V ar(Z). The risk premium m’ defined per unit of L that the
consumer is willing to pay to avoid risk Z will be such that:

F (L−m) = F (L−m′L) = E[F (L + LZ)]
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Hence: m = m′L = −F ′′(L)
F ′(L)

L2V ar(Z)
2 and: m′ = −LF ′′(L)

F ′(L)
V ar(Z)

2

The larger −L2F ′′(L)
F ′(L) , the larger m will be — the larger dm

dV ar(Z) -, and the

larger the consumer’s sensitivity to the randomness Z. The larger −LF ′′(L)
F ′(L) ,

the Arrow-Pratt measure of relative risk-aversion, the larger the premium
per unit of income L that the consumer is willing to pay to eliminate the
variance that Z brings to his utility.

Finally, take the factored lottery X =
√

LZ with E[Z] = 0. Then,
V ar(X) = LV ar(Z). The premium m to pay to avoid Z will be such that:

F (L−m) = E[F (L +
√

LZ]

Hence: m = −LF ′′(L)
F ′(L)

V ar(Z)
2 m′ = m

L = −F ′′(L)
F ′(L)

V ar(Z)
2

The larger −LF ′′(L)
F ′(L) , the Arrow-Pratt measure of relative risk-aversion,

the higher the consumer’s reaction to the variability Z, and the larger the
premium he is willing to pay to avoid it — the larger dm

dV ar(Z) . The larger

−F ′′(L)
F ′(L) , the Arrow-Pratt measure of absolute risk-aversion, the higher, m′,

the premium per unit of income L that the consumer is willing to pay.
Note that if we were analysing aversion to a risk surrounding a negatively

valued argument of F (.), i.e., if F ′(.) < 0, we could propose to measure it
by how much of a certain amount of that argument, denote it by n, the
maximizer of F (.) will be willing endure to avoid it:

F (L + n) = E[F (L + X)]

Then: n = F ′′(L)
F ′(L)

V ar(X)
2

The higher n, the more risk-averse to X the maximizer of F (.) would
be. The higher F ′′(L)

F ′(L) and not its symmetric, the larger would n be, and
thus the measure of aversion to a risk added to L - see Martins 2004, for
example.

APPENDIX B

Depart from Taylor’s expansion of F (L+X) in (A.1) to the second order,
and its expectation derived in (A.2). Consider an increase in E[X] at a
fixed variance level. Then

∂E[F (L + X)]
∂E[X]

= F ′(L) + F ′′(L)E[X]

∂E[F (L+X)]
∂E[X] > 0 provided that, for F ′(L) > 0, −F ′′(L)

F ′(L) E[X] < 1. Of course,

around E[X] = 0, ∂E[F (L+X)]
∂E[X] is determined by F ′(L). Consider the effect
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of a change in V ar(X) — that is compatible with a fixed E[X]:

∂E[F (L + X)]
∂V ar(X)

=
F ′′(L)

2

The effect is signed according to the convexity of F (L) — positive if convex,
negative if concave, as is well-known.

Admit instead that we would want to analyze the transmission of the
variance of X to that of the variance and not the expected value of the
function F (L + X). We should now inspect:

V ar[F (L + X)] (B.1)

= F ′(L)2V ar(X) +
FL′′(L)2

4
V ar(X2) + F ′(L)F ′′(L)Cov(X, X2)

Of course,

V ar(X) = E[(X − E[X])2] = E[X2]− E[X]2

V ar(X2) = E[(X2 − E[X2])2] = E[X4]− E[X2]2

Cov(X, X2) = E[(X − E[X])(X2 − E[X2])] = E[X3]− E[X]E[X2]

Now, 3rd and 4th moments of the distribution of X become important to
classify the impact of a change in the parameters of the distribution in the
volatility of F (L + X). Take for simplicity, the null expected value noise,
that is, E[X] = 0. Then, V ar(X) = E[X2]; Cov(X, X2) = E[X3] and we
can replace in (B.1):

V ar[F (L + X)] (B.2)

= F ′(L)2E[X2] +
FL′′(L)2

4
[E[X4]− E[X2]2] + F ′(L)F ′′(L)E[X3]

Interestingly, the last expression allows as to infer the effect of asymme-
try in the distribution of X — through the effect of E[X3]. And of kurtosis,
through the effect of E[X4]. In the common distribution families, it may be
difficult to disentangle all the effects, once four different parameters would
be required to produce a correspondence to the four aspects of the proba-
bility distribution of X that are now relevant: location (mean), dispersion
(variance), asymmetry and kurtosis. Moreover, changing, say, the variance
of a particular distribution usually implies a change in the other measures.
Take an example:
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Admit that X has a normal distribution of null mean; then, E[X3] = 0
and E[X4] = 3E[X2]2. Replacing above:

V ar[F (L + X)] = F ′(L)2E[X2] +
FL′′(L)2

2
E[X2]2 (B.3)

and ∂V ar[F (L+X)]
∂E[X2] = F ′(L)2 + F ′′(L)2E[X2] > 0

Interestingly, the effect is always positive and enhanced by the abso-
lute values of both F ′(L) and F ′′(L) — whereas (B.1) could suggest an
importance only of the former.

Under the last assumptions, changing the variance of the distribution of
X, we can accomp lish the trade-off between the expected value of F (L+X)
and its variance:

∂V ar[F (L + X)]
∂E[F (L + X)]

= 2
F ′(L)2 + F ′′(L)2V ar(X)

F ′′(L)

Being F (L) convex, the trade-off is positive and the inverse of the ratio
decreases with V ar(X).

(Note that L is assumed independent of E[X2]. Likewise, we can only ad-
mit that an “optimal” mean-variance trade-off is forwarded in the analysis
for ex-post scenarios.)
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