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1. INTRODUCTION

There is an impressive body of work in biostatistics and econometrics

using count regression models to explain the frequency of events, in which

case, the dependent variable takes non-negative integer values. See, e.g.

Cameron and Trivedi (1998) for a survey on count models in the regression

context. Many count models that have been proposed and studied are vari-

ants of the Poisson model. As is well known, the Poisson model has limited

applicability in practice because of its implication of equidispersion, that

is, the variance of the dependent variable equals its mean both conditional

on the explanatory variables. Among the variants of the Poisson regres-

sion model, the negative binomial model turns out to be a widely used one

for its 
exibility and parsimony. For the applications of negative binomial

model, see, e.g., Hausman, Hall and Griliches (1984) on patents and R & D

relationship, Cameron, Trivedi, Milne and Piggott (1988) on the determi-

nation of health service utilization and health insurance service, and Haab

and McConnell (1996) on recreation demand analysis, among others.

This paper studies the e�ects of measurement errors in the negative bi-

nomial model and the estimation of a negative binomial model when the

measurement errors are present. The negative binomial model has been

widely applied in biostatistics and microeconometrics, where the presence

of measurement errors is a common problem. See, e.g., Griliches (1986)

for a thorough discussion of the errors-in-variables problems in micro data.

As is well known, unobserved heterogeneity is the source of the overdisper-

sion in the negative binomial model. An interesting question is: when the

measurement errors are present in the explanatory variables, what their

e�ect on overdispersion is conditional on the observed data. This question

is important because if the dispersion of the data is a�ected by the mea-

surement errors, then the standard negative binomial model is no longer

valid to treat overdispersion as arising from unobserved heterogeneities.

This paper proves that measurement errors in covariates will, in general,

increase the extent of the \observed" overdispersion, compared with the

negative binomial model without measurement errors.

Another issue of interest is how to estimate a negative binomial model

with errors-in-variables. The estimation of errors-in-variables negative bi-

nomial model is a special case of the general nonlinear errors-in-variables

models, which have been of great interest to statisticians and econometri-

cians since 1980s. Carroll, Ruppert and Stefanski (1995) provide an exten-

sive survey of the literature on the nonlinear errors-in-variables models. To

the best of our knowledge, however, the estimation of errors-in-variables

negative binomial model has not been studied yet. This paper follows

a structural approach by assuming that the distribution of the true but

unobserved variables is known and proposes a simulation-based corrected
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maximum likelihood estimator and a simulation-based corrected score es-

timator. Our estimators provide another application of the recently devel-

oped simulation based methods in latent variables models.1 While sharing

a similar asymptotic property to that of a simulation-based corrected max-

imum likelihood estimator, the simulation-based corrected score estimator

proposed in the paper has better �nite sample performance as found in our

Monte Carlo studies.

We apply our methodology to study the elderly demand for medical care

using data from the 1996 Medical Expenditure Panel Study (MEPS). We

model counts of visits to physicians with income as one of the covariates.

There has been a long-standing suspicion, however, about the accuracy of

reported income in survey data. For example, Hausman, Newey and Pow-

ell (1995) apply the Hausman speci�cation test to some Engel curves and

reject the accuracy of reported income in the 1982 Consumer Expenditure

Survey data. Using German Socio-Economic Panel survey data, Rendtel

and Langeheine (1998) try to identify the potential e�ects of measurement

error in income on poverty dynamics. Deb and Trivedi (1997) examine the

elderly demand for medical care using the 1987 National Medical Expendi-

ture Survey (NMES). It is noted that both NMES and MEPS, the latter of

which is used in this paper, have similar sampling designs and are imple-

mented by the same agency - Agency for Health Care Policy and Research

(AHRQ). One of models they use is the negative binomial regression. How-

ever, they do not discuss the possible consequence of using potentially error

contaminated reported income. We estimate the demand model by both

the \naive" negative binomial model and the corrected negative binomial

model assuming that there may be measurement errors in the reported in-

come. The comparison of the results from these two models suggest that

income reported in MEPS is accurately measured.

This paper is organized as follows. In section 2, we prove that mea-

surement errors in covariates will increase the extent of overdispersion on

the observed data if the true data generating process is the negative bino-

mial. Section 3 proposes a simulation-based corrected maximum likelihood

estimator and a simulation-based corrected score estimator for the errors-

in-variables negative binomial models. Section 4 is devoted to the Monte

Carlo studies, which demonstrate the good �nite sample performance of the

simulation-based corrected score estimator. Section 5 presents an applica-

tion to the elderly demand for medical care using the 1996 MEPS data.

Section 6 concludes.

1For a survey on the simulation based methods developed by McFadden (1989) and
Pakes and Pollard (1989), see Gourieroux and Monfort (1996). Also, Li (2000) proposes
a simulated minimum distance estimator in the estimation of the structrual errors-in-
variables models.
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2. OVERDISPERSION CAUSED BY

ERRORS-IN-VARIABLES

The standard negative binomial model can be regarded as a mixture of

the Poisson model with a random variable that follows a gamma distribu-

tion. Such a gamma distributed random variable is used to control for the

unobserved heterogeneity that gives rise to overdispersion. In particular, a

negative binomial model has a probability mass function

f(yij�i) = �(yi + v)

�(yi + 1)�(v)

�
v

v + �i

�v �
�i

v + �i

�yi
; (1)

where v�1 = � (� > 0) is a scalar (overdispersion) parameter. In the

regression framework where some explanatory variables x are included,

�i is usually speci�ed as �i = exp(�0xi) leading to a negative binomial

regression model. The conditional mean and variance are given by

E(yijxi) = exp(�0xi); (2)

var(yijxi) =
�
1 + v�1E(yijxi)

�
E(yijxi); (3)

respectively. It is clear from (3) that the ratio of the conditional variance to

the mean is a linear function of the conditional mean. (3) also indicates that

var(yijxi) > E(yijxi). As a result, the negative binomial model explicitly

takes into account the overdispersion. The Poisson model is obtained as a

limiting case of the negative binomial model as v !1.

This paper considers the case where covariates are measured with errors.

Speci�cally, we assume that x, a vector of K covariates, is unobserved;

instead, we observe z such that z = x + � where � are independent of

x with mean 0 and variance-covariance matrix 
.2 While the conditional

mean and variance of y given x have the relationship given by (2) and (3), it
is interesting to investigate the relationship between the conditional mean

and variance of y given z when the measurement errors are present and

only z are observed. The next proposition establishes such a relationship.

Proposition 2.1. Consider a negative binomial model that has the fea-

ture given by (2) and (3) with z = x+ � where � are independent of x with

mean 0 and variance-covariance matrix 
, then with measurement errors

in covariates, we have

var[yjz] � �
1 + v�1E[yjz]�E[yjz];

2For ease of exposition, we assume that all the explanatory variables are measured
with errors. Nonetheless, it is general enough to include the case where only some of the
explanatory variables are measured with errors, which will be the case in our application.
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where the equality holds only when E[yjx] = 1 or the conditional density of

y given x is a.e. 0.

Proposition 2.1 indicates that given that the true data generating process

is the negative binomial regression model and the overdispersion satis�es

(3) for (y; x), the extent of \observed" overdispersion will generally be

larger for (y; z). This is an interesting result which implies that if the

true model is the negative binomial model and some explanatory variables

are measured with errors, direct estimation of the negative binomial model

using the observed data will yield upward biased estimates of the overdis-

persion parameter. Also, Proposition 2.1 can be extended to more general

cases such that conditional mean and variance of y given the latent vari-

ables x satisfy

var(yijxi) =
�
1 + v�1Ek(yijxi)

�
E(yijxi);

where k is a positive integer. The variation of k allows di�erent rates

of increment in the conditional variance. In particular, k equals 0 for

a negative binomial-1, equals 1 for a negative binomial-2 (Cameron and

Trivedi (1986)), equals 2 for a Poisson inverse Gaussian regression (Dean,

Lawless, and Willmot (1989)), equals 1 and v equals 1 for a geometric

model. A larger k can be used to accommodate highly overdispersed data.

3. ESTIMATION OF THE ERRORS-IN-VARIABLES

NEGATIVE BINOMIAL REGRESSION MODEL

As indicated by Proposition 2.1, measurement errors increase the extent

of the \observed" overdispersion if the true data generating process is the

negative binomial. One implication of this result, as mentioned earlier, is

that if one ignores measurement errors and uses a \naive" negative bino-

mial model, which treats contaminated z as a true variable, upward biased

estimate of the overdispersion parameter will occur. On the other hand, as

a folklore in econometrics, measurement errors may cause downward biases

in the estimation of coeÆcients of latent variables in a nonlinear model

(see, e.g. Hausman et al. (1995) and Chesher (1991) for some discussion

of the so-called \attenuation" caused by errors-in-variables). Given the

popularity of the negative binomial model in count data analysis and the

importance of measurement errors problem, it is surprising that little work

has been done in the estimation of errors-in-variables negative binomial

model.3 This section is devoted to proposing a simulation-based corrected

3For the estimation of errors-in-variables Poisson regression model, see Nakamura
(1990) and Guo and Li (2000).
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maximum likelihood estimator and a simulation-based corrected score es-

timator for estimating errors-in-variables negative binomial models.

As assumed in Section 2, while we observe yi, i = 1; : : : ; n, we do not

observe xi but instead we observe zi = xi+ "i; :i = 1; 2; :::; n: Suppose that
the true data generating process of the dependent variable is the negative

binomial regression model with the density function

Pr(Yi = yijxi) = �(yi + v)

�(yi + 1)�(v)

�
�i(�0)

v + �i(�0)

�yi � v

v + �i(�0)

�v
;

where �i(�0) = exp(�00xi): Then the maximum likelihood estimate (MLE)

�̂MLE based on (yi;xi); i = 1; 2; :::; n is consistent. The (average) log-

likelihood function using (yi;xi); i = 1; 2; :::; n is

L0 =
1

n

nX
i=1

�
ln

�(yi + v)

�(yi + 1)�(v)
+ v ln v + yi�

0xi � (yi + v) ln(v + exp(�0xi)

�
;

which converges to

q = Ex;y

�
ln

�(y + v)

�(y + 1)�(v)
+ v ln v + y�0x� (y + v) ln(v + exp(�0x))

�
:

(4)

The \naive" (average) log-likelihood function is

L1 =
1

n

nX
i=1

�
ln

�(yi + v)

�(yi + 1)�(v)
+ v ln v + yi�

0zi � (yi + v) ln(v + exp(�0zi))

�

= L0 +
1

n

nX
i=1

[yi�
0"i + (yi + v)(ln(v + exp(�0xi))� ln(v + exp(�0zi)))] ;

which no longer converges to q because the second term in the last line

does not converge to 0. Therefore, using a \naive" negative binomial model

will result in biased estimates in general.4 However,

L1 � 1

n

nX
i=1

[yi�
0"i + (yi + v)(ln(v + �i(xi))� ln(v + �i(zi)))] ;

or equivalently,

1

n

nX
i=1

�
ln

�(yi + v)

�(yi + 1)�(v)
+ v ln v + yi�

0zi � (yi + v) ln(v + exp(�0xi))

�
;

(5)

4As discussed in Chesher (1991), in general, E(yjz) 6= E(yjx). As a result, the pseudo
maximum likelihood estimation does not yield consistent estimates either.
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still converges to (4). We refer to (5) as a corrected log-likelihood func-

tion of the errors-in-variables negative binomial model. The corresponding

corrected score equations are

� :
1

n

nX
i=1

�
yizi � v + yi

v + exp(�0xi)
exp(�0xi)xi

�
= 0; (6)

v :
1

n

nX
i=1

�
(ln

�(yi + v)

�(yi + 1)�(v)
)0 + 1 + ln v

� ln(v + exp(�0xi))� v + yi

v + exp(�0xi)

�
= 0: (7)

In principle, (5) can be maximized to obtain consistent estimates for �
and v. Such a maximization problem, however, is infeasible to implement in
practice due to the fact that the last term in (5) involves the unobservables

x: To resolve this problem, we adopt a structural approach by assuming

the distribution of the latent variables x is known.5 If this is the case, then

the maximization of (5) can be implemented using the simulation based

methods.

To proceed, note that the last quantity 1
n

Pn

i=1(yi+ v) ln(v+exp(�0xi))
of (5) converges to

Ex;y [(y + v) ln(v + exp(�0x))]

=

Z �Z
(y + v)g(yjx)dy

�
ln(v + exp(�0x))f(x)dx: (8)

As a result, if the former is replaced by the latter in (3.2), we have that

1

n

nX
i=1

�
ln

�(yi + v)

�(yi + 1)�(v)
+ v ln v + yi�

0zi

�
� Ex;y [(y + v) ln(v + exp(�0x))]

(9)

converges to (4) as well. Therefore, maximization of (9) also yields consis-

tent estimates. Although maximization of (9) is straightforward in some

cases when x is a scalar, in general it is much more involved if x is a

multivariate vector. This is due to the multiple integrals involved in the

expectation with respect to x.6 This diÆculty highlights the bene�t of

5This assumption is not as strong as it might seem. In fact, it has been a common
practice in the estimation of structural nonlinear errors-in-variables models to assume
that the functional forms of latent distributions are known. Such an assumption can be
justi�ed in those situations where there are replications for the latent variables or the
validation data are available. See, e.g., Hsiao (1989, 1992) and Lee and Sepanski (1995).

6In some cases even with scalar x, the expectation involving an integral is also diÆcult
to compute.
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using the simulation based methods. Speci�cally, from (8),

Ex [(v + exp(�0x)) ln(v + exp(�0x))] ;

can be approximated by its unbiased estimator

1

S

SX
s=1

[ln(v + exp(�0~xs))(v + exp(�0~xs))] ;

where ~xs, s = 1; : : : ; S, are drawn from the density function of x: Conse-
quently, one can now maximize

~qn =
1

n

nX
i=1

�
ln

�(yi + v)

�(yi + 1)�(v)
+ v ln v + yi�

0zi

� 1

S

SX
s=1

ln(v + exp(�0~xs))(v + exp(�0~xs))

#
: (10)

Since the estimator obtained by maximizing (10) is a (partially) simulation-

based corrected likelihood estimator, it has the same properties as simu-

lated maximum likelihood (SML) estimators that have been extensively

studied recently (see, e.g., Hajivassiliou (1997)). In particular, the estima-

tor is consistent as S and n both go to in�nity.

As indicated in Hajivassiliou (1997), sometimes, SML estimators do not

perform well in �nite samples. This turns out to be true for our (par-

tially) simulation-based corrected likelihood estimator as well.7 Poor �nite

sample performance of the SML estimators is mainly due to the fact that

E~qn = q does not necessarily imply E argmax~qn = argmax q (Hajivassil-

iou (1997)). To alleviate the instability of the simulation-based (corrected)

maximum likelihood estimation, we propose to work on the score equa-

tions (6) and (7). This is motivated by the fact that the instability of

the simulation-based corercted maximum likelihood estimator is caused by

the quite di�erent presentation of score equation of (10) from the original

one. As the comparision reveals, simulation in the log-likelihood function

introduces additional variation that cannot be ignored.

Note that the terms involving the observed x in the corrected score equa-

tions (6) and (7) satisfy

1

n

nX
i=1

�
v + yi

v + exp(�0xi)
exp(�

0
xi)xi

�
! E

�
exp(�

0
x)x

�
; (11)

1

n

nX
i=1

�
1� ln(v + exp(�

0
xi))�

v + yi

v + exp(�0xi)

�
! E

�
� ln(v + exp(�

0
x))

�
:(12)

7The Monte Carlo results are available from the authors upon request.
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As a result, these two terms in (6) and (7) can be approximated by their

corresponding probability limits given in (11) and (12), respectively, which

in turn can be approximated by simulations if the expectations are diÆcult

to calculate. Speci�cally, we can draw ~xs, s = 1; : : : ; S, from the density of

x and obtain simulation-based corrected score estimators �̂, v̂ by solving

the following equations

1

n

nX
i=1

"
yizi � 1

S

SX
s=1

exp(�̂0~xs)~xs

#
=0; (13)

1

n

nX
i=1

"
(ln

�(yi + v̂)

�(yi + 1)�(v̂)
)0 + ln v̂ � 1

S

SX
s=1

ln(v̂ + exp(�̂0~xs))

#
=0: (14)

As for the simulation-based maximum likelihood estimator, the consistency

of the simulation-based corrected score estimator requires that both n and

S go to in�nity.8 The following result gives its asymptotic distribution.

Proposition 3.2. Consider a negative binomial model, with assumption

that both n and S !1; and n=S ! 0;
p
n( ~���0) converges in distribution

to N(0; I�1(J1 + J2 + J3)I
�1), where I; J1; J2; and J3 are de�ned in the

proof of this proposition in the Appendix.

Although it has similar asymptotic properties to a simulation-based cor-

rected maximum likelihood estimator, the simulation-based corrected score

estimator performs quite well in a Monte Carlo study reported in the next

section.

4. MONTE CARLO EXPERIMENTS

To assess the �nite sample properties of our simulation-based corrected

score estimator, we conduct Monte Carlo experiments using a regression

model with only one regressor.

The experiments are designed as follows. The latent variable x is nor-

mally distributed with mean � = 1:1 and standard deviation �x = 0:4: The
dependent variable y is generated from a negative binomial model with the

8Because of special feature of our problem, it is diÆcult to interpret corrected score
equations (6) and (7) as simple analogs to some moment conditions constructed from
residuals that are di�erences between the observed y and conditional expectations. As
a result, we are unable to construct a method of simulated score estimator in the sense
of Hajivassiliou and McFadden (1998). Our simulation-based corrected score estimator,
on the other hand, can be viewed essentially as a simulation-based corrected maximum
likelihood estimator, whose consistency requires that both the sample size and number
of simulations go to in�nity.
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covariate x and true value of the parameter �0 = 1:We vary overdispersion

parameter v0 from 0.5, 2/3, to 1 in experiments. Smaller value of v0 means
greater overdispersion of the data. The measurement error � is distributed
as N(0; �2� ); where �� varies in experiments from 0.6, 0.5, 0.3 to 0.2. In this

setting, we de�ne r to be the ratio of �� and �x (r = ��=�x), which is used

as a measure for the relative magnitude of measurement error. Intuitively,

when r is relative small, the bias from using the \naive" negative binomial

model should also be small because the magnitude of variation of regressor

dominates that of the variation of the error. The observed variable z is

generated from z = x+�; where x and � are independently simulated: Each
experiment is replicated 500 times with 500 observations in each replica-

tion. For the choice of S, we choose S to be 1000, twice of the sample

size. Also, for comparability, we keep the same random number generating

seeds for each experiment. Of course, the seed for data generation within

an experiment changes. To summarize, we vary two values in experiments:

the standard deviation of the measurement error �� and the overdispersion
parameter v.
The results of Monte Carlo experiments are given in Table 1, where �̂T is

the estimate from true negative binomial model that uses observations on

true x, �̂C is the simulation-based corrected score estimate and �̂N is the

estimate from the \naive" model using the observations on z. We de�ne

R (= (�̂ � �0)=�0 or (v̂ � v0)=v0)) as the relative bias for estimate. The

simulations show that the \naive" negative binomial model always gives

upward biased estimate of the overdispersion as established in Proposition

2.1. It is interesting to see that there is a downward biased estimate of

the slope, which is consistent with the attenuation e�ect as described in

Chesher (1991) and Hausman et al. (1995). Also, as anticipated, the bias

arising from the \naive" model is small when r is small. For instance, when
v0 is fxed at 0.5 and r declines from 1.5 to 0.5, the relative biases for �̂N
reduces from -15.9% to only -2.2% while the relative biases for v̂N reduces

from -16.0% to -1.8%. This dramatical change pattern, however, cannot be

observed by changing v and �xed r: The simulation-based corrected score

estimates perform consistently well regardless of the size of v and r. The
negative binomial model using true x as explanatory variable gives nice

estimates. It is reasonable because the model uses the accurate data and

correctly speci�es the data generating process.

These results can be seen more clearly from Figures 1 and 2, which show

the estimates of � from corrected and naive negative binomial models, re-

spectively, where the true � = �0 = 1. TheX axis is the relative magnitude

of measurement error r (it also indirectly demonstrates the impact of �
�
;

because r = �
�
/�x and �x is �xed as 0.4 in all experiments); the Y axis

is the overdispersion parameter v, and the Z axis is the estimate of � .

Figure 1 reveals that the ratio r has more e�ects on \naive" negative bi-
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nomial estimate than overdispersion, while corrected score estimates are

not a�ected signi�cantly by either ratio or overdispersion. Also because we

keep the same seeds in all experiments, it is not surprising to see in Table

1 that the estimates �̂T and v̂T for the true model are the same in all ex-

periments. The simulation is programed using SAS and run on a 160MHz

POWER2SuperChip processor in an IBM RS/6000 Scalable POWER par-

allel System. It takes about 75 minutes CPU time to obtain results for

Table 1.

The following �gures show the estimates of slope � from naive negative

binomial and corrected negative binomial models. The true value �0 = 1:
The X axis is the relative magnitude of measurement error r, the Y axis

is the overdispersion v; and the Z axis is the estimate of �.

FIG. 1. parameter estimate of �̂N
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5. APPLICATION

The data (HC-003) are obtained from the 1996 Medical Expenditure

Panel Survey (MEPS) Household Component (HC), which are collected by

the Agency for Health Care Policy and Research (AHRQ) (1998). MEPS
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TABLE 1.

v0 = 0:5 v0 = 2=3 v0 = 1

Mean Std Err R(%) Mean Std Err R(%) Mean Std Err R(%)

�̂T 0.995 0.057 �0:5 0.998 0.051 �0:2 0.998 0.045 �0:2

v̂T 0.504 0.042 0.8 0.675 0.062 1.2 1.005 0.094 0.5

�̂C 0.995 0.072 �0:5 0.998 0.068 �0:2 0.999 0.060 �0:1

v̂C 0.510 0.065 2.0 0.685 0.101 2.7 1.039 0.244 3.9

�̂N 0.841 0.060 �15:9 0.842 0.053 �15:8 0.839 0.046 �16:1

v̂N 0.420 0.038 �16:0 0.539 0.050 �19:2 0.751 0.072 �24:9

�� = 0:5; r = 1:25.

v0 = 0:5 v0 = 2=3 v0 = 1

Mean Std Err R(%) Mean Std Err R(%) Mean Std Err R(%)

�̂T 0.995 0.057 �0:5 0.998 0.051 �0:2 0.998 0.045 �0:2

v̂T 0.504 0.042 0.8 0.675 0.062 1.2 1.005 0.094 0.5

�̂C 0.995 0.070 �0:5 0.998 0.066 �0:2 0.999 0.059 �0:1

v̂C 0.510 0.062 2.0 0.683 0.097 2.4 1.032 0.199 3.2

�̂N 0.888 0.059 �11:0 0.889 0.053 �11:8 0.885 0.046 �11:5

v̂N 0.440 0.039 �12:0 0.567 0.052 �14:7 0.803 0.076 �19:7

�� = 0:3; r = 0:75.

v0 = 0:5 v0 = 2=3 v0 = 1

Mean Std Err R(%) Mean Std Err R(%) Mean Std Err R(%)

�̂T 0.995 0.057 �0:5 0.998 0.051 �0:2 0.998 0.045 �0:2

v̂T 0.504 0.042 0.8 0.675 0.062 1.2 1.005 0.094 0.5

�̂C 0.995 0.068 �0:5 0.998 0.064 �0:2 0.999 0.057 �0:1

v̂C 0.509 0.059 1.8 0.681 0.090 2.1 1.027 0.173 2.7

�̂N 0.956 0.059 �4:4 0.959 0.052 �4:1 0.956 0.046 �4:4

v̂N 0.477 0.041 �4:6 0.629 0.057 �5:7 0.913 0.085 �8:7

�� = 0:2; r = 0:50.

v0 = 0:5 v0 = 2=3 v0 = 1

Mean Std Err R(%) Mean Std Err R(%) Mean Std Err R(%)

�̂T 0.995 0.057 �0:5 0.998 0.051 �0:2 0.998 0.045 �0:2

v̂T 0.504 0.042 0.8 0.675 0.062 1.2 1.005 0.094 0.5

�̂C 0.995 0.067 �0:5 0.999 0.063 �0:1 0.998 0.056 �0:2

v̂C 0.509 0.058 1.8 0.680 0.088 1.9 1.026 0.168 2.6

�̂N 0.978 0.058 �2:2 0.980 0.051 �2:0 0.979 0.045 �2:1

v̂N 0.491 0.042 �1:8 0.653 0.059 �2:5 0.960 0.090 �4:0

There are 500 replications with 500 observations in each replication. The latent
variable x is distributed as N(1:1; 0:4): The dependent variable y is generated from a
negative binomial model with the covariate x and true value of the parameter �0 = 1:
The observed variable z is generated from z = x+�, where x and � are independently
generated. The measurement error � is distributed as N(0; ��), where �� varies from
0.6, 0.5, 0.3 to 0.2. r = ���x is the relative magnitude of the measurement error. The
overdispersion parameter v varies from 0.5 2=3, to 1. In the table, �̂T is the estimate

from the true negative binomial model based on true x, both �̂C , the simulated
corrected score estimate, and �̂N , the estimate from the \naive" model, are based on
observations on z. S = 1000. R is the percentage of relative bias to the true value.
�� = 0:6; r = 1:50.
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FIG. 2. parameter estimate of �̂C
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provides information about �nancing and use of medical care in the United

States. The HC-003 is designed for three interviews covering calendar

year 1996 to provide a nationally representative sample of the U.S. civilian

non-institutionalized population on health care utilization. The interview

interval is fairly close. The public use dataset contains 23,230 persons.

It has been documented in the literature that the demand behaviors

for medical services between the elderly and young people are signi�cantly

di�erent (see e.g. Deb and Trivedi, (1997)). Thus, we focus on those

people who are 65 or over. After reorganizing the data, a sample of 2218

observations is obtained.

The HC-003 �le we use contains two rounds survey (information for some

variables from round three is also available). The main variables in MEPS

are classi�ed into six groups, namely, survey administration, demographic,

employment, health status, health insurance, and utilization. Except ad-

ministration information, we select related variables from each of groups.

The demographic variables include AGE, MALE, BLACK, MARRIED

(marital status), DEGREE (education level), NOREAST, MIDWEST, and
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WEST (used to control the regional di�erence), and INCOME.9 The health

variables contain POORHLTH, EXCLHLTH (both are self-perceived mea-

sures of health status), ADLHELP (a measure of disability status), and

COGLIMT (a measure of cognitive ability). The employment and health

insurance variables contain EMPLOYED (employment status), MEDICAID,

PRIVINS (supplementary private insurance).10 The number of physician

hospital outpatient visits (OPDRV) is treated as the dependent variable.

The variable de�nitions and summary statistics are given in Table 2.

We pay special attention to the accuracy of income. To examine whether

there is a measurement error in the income variable, we apply the method

discussed in previous sections. Adopting a similar approach used in Haus-

man et al. (1995), we utilize income from �rst two rounds (INCOME1,

INCOME2). Because the income sources for the elderly are more stable

than for the youth and the two rounds are interviewed at close time peri-

ods, which greatly eliminates the income variation due to job change and

other unobserved factors, we view INCOME1 and INCOME2 as repeated

measures of the true income variable. Following Lewbel (1996), we assume

that the true income variable is distributed as a log-normal. Assuming

that the recorded income from the survey is equal to the sum of the true

income and a measurement error that is independent of the true income,

the mean of the recorded income therefore equals the mean of the true but

unobserved income.

With the mean and variance calculated as above, the simulated income

can be easily generated. The mean and standard deviation of simulated

income are listed at the bottom of Table 2. As can be seen, they are

fairly close to but smaller than the sample mean and standard deviation,

which implies that the sample data contain some extreme values of income.

Actually, we �nd that the largest weekly income is $1538.40 (or 7.338 after

log-transformation), while 99% sample has weekly income less than $590.80

(or 6.369 after log-transformation).

Both naive and corrected negative binomial regression models are esti-

mated. The results are given in Table 3. Since the asymptotic variance-

covariance matrix of the simulation-based corrected score estimator as

given in Proposition 3.1 is complicated, we calculate the standard errors of

this estimator using bootstrap. To make it comparable, we also use boot-

strap to calculate the standard errors of the estimates from the \naive"

9Since the original dataset does not contain the income variable, we calculate it by
using the product of weekly work hours and hourly wage rate. Actually, the weekly
work hours and hourly wage rate reported in the survey are imputed from a person's
income based on the time period on which the income was based and the number of
hours worked per time period. So our calculation is essentially a reverse step.

10Cartwright, Hu, and Huang (1992) and Deb and Trivedi(1997) have shown that
the supplementary private insurance in a utilization regression for people 65 and over is
exogeneous.
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TABLE 2.

Variable de�nitions and summary statistics

Variable De�nition Mean Std. dev.

utilization

OPDRV number of physician hospital outpatient visits 0.431 1.808

health insurance

MEDICAID = 1 if the person is a recipient of Medcaid 0.119 0.324

PRIVINS = 1 if the person is covered by private insurance 0.578 0.494

health employment

EMPLOYED = 1 if the person is employed 0.094 0.292

health status

POORHLTH = 1 if perceived health status of the person 0.092 0.288

is poor

EXCLHLTH = 1 if perceived health status of the person 0.171 0.376

is excellent

ADLHELP = 1 if activities of daily living need help 0.087 0.283

COGLIMT = 1 if the person has cognitive limitation 0.127 0.333

demongraphic

NOREAST = 1 if the person lives in northeastern US 0.223 0.416

MIDWEST = 1 if the person lives in midwestern US 0.239 0.427

WEST = 1 if the person lives in western US 0.203 0.403

MALE = 1 if the person is male 0.390 0.488

AGE log-transferred age 4.300 0.087

BLACK = 1 if the person is African American 0.120 0.325

MARRIED = 1 if the person is married 0.959 0.199

DEGREE highest degree (1-no degree;2-GED;3-high 2.204 1.263

school;4-bachelor;5-master;6-ph.d;0-other)

INCOME1 log-transferred weekly income in round 1 0.451 1.494

INCOME2 log-transferred weekly income in round 2 0.459 1.478

INCOME simulated log-transferred weekly income 0.424 1.404
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TABLE 3.

Parameter estimates of \naive" and corrected negative binomial regression models

Negative binomial Corrected Negative binomial

MEDICAID 0.725�� (0.34) 0.722�� (0.35)

PRIVINS 0.114 (0.16) 0.114 (0.18)

EMPLOYED 0.072 (0.44) 0.070 (0.34)

POORHLTH 0.613�� (0.29) 0.611�� (0.30)

EXCLHLTH �0:141 (0.21) �0:140 (0.21)

ADLHELP �0:620� (0.34) �0:621� (0.35)

COGLIMT 0.071 (0.32) 0.069 (0.33)

NOREAST 0.452�� (0.23) 0.452�� (0.23)

MIDWEST 0.140 (0.18) 0.140 (0.18)

WEST �0:357� (0.22) �0:357� (0.22)

MALE 0.384�� (0.14) 0.379�� (0.15)

AGE �2:540�� (0.85) �2:561�� (0.85)

BLACK 0.121 (0.28) 0.119 (0.30)

MARRIED �0:071 (0.37) �0:076 (0.38)

DEGREE 0.009 (0.06) 0.045 (0.09)

INCOME �0:093 (0.09) �0:040 (0.04)

Constant 9.667�� (3.69) 9.662�� (3.69)

v 0.171�� (0.02) 0.170�� (0.02)

HAUSMAN'S TEST 0.146

Notes: standard errors are in parentheses.
* statistically signi�cant at the 10% level.
** statistically signi�cant at the 5% level.
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negative binomial model. The estimates from both models are quite close,

which makes the existence of the measurement errors suspicious. To further

investigate, we apply Hausman's speci�cation test. The idea of this test is

that under the null hypothesis of no measurement error, both \naive" neg-

ative binomial and corrected negative binomial give consistent estimators,

while the former is more eÆcient. If the null is false, however, then only

corrected negative binomial gives consistent estimates. The Hausman's test

statistics is 0.146, which is not high enough to reject the null that there is

no measurement error. Table 3 also shows that most variables have smaller

standard errors (more eÆcient) in \naive" than corrected negative binomial

model.

A closer look of the results indicates the following. First, Medicaid insur-

ance coverage has strong positive e�ects on the outpatient visits, while this

is not shown for private insurance status (PRIVINS). Considering Medi-

caid as an insurance plan for the poor, it con�rms, at least partially, the

importance of this policy for vulnerable population in society. Second, the

income e�ect for the elderly is not signi�cant, which has been also found by

Cartwright et al. (1992) and Deb and Trivedi (1997). This result can be ex-

plained by the dominance of insurance coverage on the income e�ect. The

insensitivity of utilization to marginal changes in income may be due to the

generosity of Medicare that is irrespective of family income. The employ-

ment status is not signi�cant either. This �nding may be understandable,

as when a certain level of income (e.g. Social Security Income) for the

elderly is guaranteed, whether to hold a job is no longer as important as is

for young people. On the other hand, even if a senior citizen is employed,

the capability of his or her physical condition still limits the amount of in-

come he or she could receive from the job. Therefore, the marginal utility

of employment is negligible. Third, the health status a�ects the utiliza-

tion of medical care, especially for those who are with poor self-perceived

health status. The limitation of daily living activities, however, decreases

the number of visits, which may re
ect the inconvenience for those with

diÆculty in daily living activities to access the services. Similarly to the

mobility issue for those who have diÆculty in daily living activities, people

tend to decrease the number of outpatient visits with age going up. This

is illustrated in Deb and Trivedi (1997) as well. Also men seek outpatient

visits more often than women, which might contradict the conventional

view. But the race, marital status, and education level have no signi�cant

impact on the utilization, which are consistent with previous �ndings.

6. CONCLUSION

This paper considers the e�ects of measurement errors in the negative

binomial regression models.We show that in general the errors in covari-
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ates increase the degree of the \observed" overdispersion and also result

in biased estimates for mean parameters if the model is estimated with

the \naive" method. This also justi�es the upward bias in the overdis-

persion parameter if the \naive" model is used ignoring the measurement

errors. We also propose a simulation-based corrected maximum likelihood

estimator and a simulation-based corrected score estimator to consistently

estimate the errors-in-variables negative binomial model assuming that the

distribution of the latent variables is known. The Monte Carlo study shows

that the simulation-based corrected score estimator is preferred to the

simulation-based corrected maximum likelihood estimator in �nite sam-

ples although they share similar asymptotic properties. The application to

the elderly demand for medical care using MEPS shows that the corrected

model can be used to detect the potential problem of measurement error

and provide consistent estimates of the regression model.

APPENDIX A

Proof of Proposition 2.1 As assumed, we have z = x + � where �
are assumed to be independent of x with mean 0. Let g(xjz) denote the
conditional density of x given z. Since the true density distribution is

negative binomial, we have

var[yjx] = �
1 + v�1E[yjx]�E[yjx];

or

E[y2jx] = E[yjx] + (1 + v�1)(E[yjx])2:
Using Cauchy-Schwartz inequality, we have

�Z
E[yjx]g(xjz)dx

�2
=

�Z
E[yjx]

p
g(xjz)

p
g(xjz)dx

�2

�
Z
(E[yjx]

p
g(xjz))2dx

Z �p
g(xjz)

�2
dx

=

Z
(E[yjx])2g(xjz)dx: (A.1)

It is straightforward to show that

v�1
�Z

E[yjx]g(xjz)dx
�2

+

Z
E[yjx]g(xjz)dx

�
Z �

E[yjx] + (1 + v�1)(E[yjx])2� g(xjz)dx � �Z E[yjx]g(xjz)dx
�2

;
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or �
1 + v�1

Z
E[yjx]g(xjz)dx

� Z
E[yjx]g(xjz)dx

�
Z

E[y2jx]g(xjz)dx �
�Z

E[yjx]g(xjz)dx
�2

:

That is �
1 + v�1E[yjz]�E[yjz] � var[yjz]:

The equality holds only when E[yjz] = 1 or g(xjz) = 0 almost everywhere.

Proof of Proposition 3.1 Denote � = (�v)0: The corrected score

functions for � are

1

n

nX
i=1

S(�) �
�@LC

@�

@LC
@v

�
=

� 1
n

nP
i=1

si(�)

1
n

nP
i=1

si(v)

�

=

� 1
n

nP
i=1

h
yizi � v+yi

v+exp(�0xi)
exp(�0xi)xi

i
1
n

nP
i=1

h
(ln

�(yi+v)

�(yi+1)�(v)
)0 + 1 + ln v � ln(v + exp(�0xi))� v+yi

v+exp(�0xi)

i
�

which converge to
� Eyz�Ex exp(�0x)x

E

h
(ln

�(yi+v)

�(yi+1)�(v)
)0+ln v

i
�Ex ln(v+exp(�0x))

�
when n!1:

The simulation-based corrected score equations are

0 =
1

n

nX
i=1

~S( ~�) �
� 1
n

nP
i=1

~si(~�)

1
n

nP
i=1

~si(~v)

�

=

� 1
n

nP
i=1

h
yizi � 1

S

PS

s=1 exp(
~�0~xs)~xs

i
1
n

nP
i=1

h
(ln

�(yi+~v)

�(yi+1)�(~v)
)0 + ln ~v � 1

S

PS

s=1 ln(~v + exp(~�0~xs))
i
�
;

(A.2)

where ~xs is the simulated covariates from the distribution of x.

The simulation-based corrected score function can be rewritten as

1p
n

nX
i=1

~Si( ~�) =
1p
n

nX
i=1

Si( ~�) +
1p
n

nX
i=1

An +

p
n

S

SX
s=1

Bs;
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where

1p
n

nX
i=1

An

=
1p
n

nX
i=1

� h
~v+yi

~v+exp(~�0xi)
exp(~�0xi)xi � Ex exp(~�

0x)x
i

h
~v+yi

~v+exp(~�0xi)
� 1 + ln(~v + exp(~�0xi))� Ex ln(~v + exp(~�0x)

i�;
and

p
n

S

SX
s=1

Bs =

p
n

S

SX
s=1

� h
Ex exp(~�

0x)x � exp(~�0~xs)~xs

i
h
Ex ln(~v + exp(~�0x)� ln(~v + exp(~�0~xs))

i�:
By Taylor's expansion,

1p
n

nX
i=1

Si( ~�) � 1p
n

nX
i=1

(Si(�0)+Si�(�0)( ~���0))

=
1p
n

nX
i=1

Si(�0) +
p
n( ~���0)

1

n

nX
i=1

Si�(�0);

with ESi�(�0) = �I:
Therefore,

p
n( ~���0) � I�1[

1p
n

nX
i=1

Si(�0)+
1p
n

nX
i=1

An +

p
n

S

SX
s=1

Bs]:

With assumption that Bs has �nite second order moment, we have

SP
s=1

Bs

p
S

� N(0;
0);

when S ! 1: As a result, when n ! 1; s ! 1; and n
S
! 0; we have

p
n

S

SP
s=1

Bs = op(1).

It is clear that

1p
n

nX
i=1

An � N(0; J2);

where

J2 = Emim
0
i;
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mi =

� ~v+yi

~v+exp(xi~�0)
exp(~�0xi)xi � Ex exp(~�

0x)x

~v+yi

~v+exp(~�0xi)
� 1 + ln(~v + exp(~�0xi))� Ex ln(~v + exp(~�0x))

�
:

And

1p
n

nX
i=1

Si(�0) � N(0; J1);

where

J1 = ESi(�0)S
0
i(�0):

Overall,
p
n( ~� � �0) converges in distribution to N(0, I�1(J1 + J2 +

J3)I
�1), where

J3 = E[miSi(�0)
0 + Si(�0)

0mi]:
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